
Building BSD with meta mode
To be presented at BSDCan 2011.

Abstract
Junos is a BSD derived OS.

For over 10 years, it has been built using bmake (the portable version of NetBSD's make),
it has been through several evolutions taking advantage of techniques such as automated
dependency collection both on a per directory, and tree-wide to facilitate parallel building.
The author has added many features to NetBSD's make in that time.

This talk will discuss the latest evolution of the Junos build, taking advantage of meta
mode in bmake - which has been contributed to NetBSD. The key makefiles discussed are
available as part of the generic mk-files distribution that accompanies bmake.

A previous talk at BSDCan described John Birrell's build tool for FreeBSD.

The basic idea, of capturing meta info as targets are built remains, but the implementation
has been completely overhauled and enhanced as part of the merging to bmake. The result
retains the benefits without sacrificing any flexibility.

The original prototype for the FreeBSD build leveraged DTrace to track interesting
(successful) system calls during the building of each target. Since DTrace required
elevated privileges, we asked John to implement a simple kernel module (filemon),
which make can use to get the same (and in some cases better) results.

The meta info thus collected allows for much more accurate update builds, as well as
capturing tree based dependencies, to allow a clean tree build to be initiated from any
point of interest.

Introduction
This talk is not about Junos (sorry). Rather, it is about building a large code base - like
BSD (take your pick), for multiple architectures, in a reliable and efficient manner. Junos
is simply an example, (any numbers I quote will be vague but erring on the conservative
side).

First a couple of words about myself. Among other things, I have been building software
and build systems for over 20 years. I have maintained the bmake distribution since the
early '90s, and have been one of the maintainers of NetBSD's make for over 10 years.

Almost any mention of bmake below, should be assumed to hold for the make found in
NetBSD. For the last several years the bmake version represents the date of the last sync
from NetBSD.

These days bmake adds a rather thin film of additional portability over NetBSD's make, I
test each distribution on the platforms I have access to which is currently NetBSD,
FreeBSD, Linux, SunOS and Darwin. In the past I've also used it on AIX, HPUX, Irix,

OSF1, Ultrix and more. Based on the occasional bug report, bmake and the accompanying
mk-files get used on some pretty obscure systems ;-)

BSD is a good example of a large, well organized code base, and to a large extent the BSD
build is a good example too. The build magic is mostly in bsd.*.mk, and the top-level
makefile. With the result that the bulk of the makefiles that people work with can be quite
simple. That's not to say that the BSD build cannot be improved.

Out of curiosity, I had a colleague (who does such things) time a FreeBSD 8.x make -j24
universe, it took 89 minutes to produce just under 14Gb in /usr/obj/.

The same machine, doing a Junos production build takes about 260 minutes. That sounds
bad until you consider it produces over 8 times the output - about 3 times the Gb/hour -
without meta mode. There is still room for improvement.

Note: With regard to the the key makefiles discussed later, Juniper are contributing these
to the community, via the mk-files distribution that accompanies bmake. I've tweaked
some of them to be a bit more generic, and provided generic versions of the makefiles not
suitable for distribution.

Teaser
Here's a quick example, building /bin/sh in FreeBSD current, in a clean tree:

$ mk destroy
(cd /c/sjg/work/FreeBSD/current/src && rm -rf /c/sjg/work/FreeBSD/current/obj/i386)
$ time mk -j12 -C bin/sh
[Creating objdir /c/sjg/work/FreeBSD/current/obj/i386/bin/sh...]
Checking /c/sjg/work/FreeBSD/current/src/stage for i386 ...
Checking /c/sjg/work/FreeBSD/current/src/stage for host ...
[Creating objdir /c/sjg/work/FreeBSD/current/obj/i386/stage...]
[Creating objdir /c/sjg/work/FreeBSD/current/obj/freebsd9-i386/stage...]
..
Building /c/sjg/work/FreeBSD/current/obj/i386/stage/stage0
Building /c/sjg/work/FreeBSD/current/obj/i386/stage/stage_root
Building /c/sjg/work/FreeBSD/current/obj/i386/stage/stage_include
Checking /c/sjg/work/FreeBSD/current/src/include for i386 ...
Checking /c/sjg/work/FreeBSD/current/src/usr.bin/rpcgen for host ...
[Creating objdir /c/sjg/work/FreeBSD/current/obj/freebsd9-i386/usr.bin/rpcgen...]
Building /c/sjg/work/FreeBSD/current/obj/freebsd9-i386/usr.bin/rpcgen/.dirdep
Building /c/sjg/work/FreeBSD/current/obj/freebsd9-i386/usr.bin/rpcgen/rpc_main.o
..
Building /c/sjg/work/FreeBSD/current/obj/freebsd9-i386/usr.bin/rpcgen/rpcgen
Building /c/sjg/work/FreeBSD/current/obj/freebsd9-i386/usr.bin/rpcgen/stage_files.prog
Checking /c/sjg/work/FreeBSD/current/src/usr.bin/rpcgen/Makefile.depend.host: .depend
Checking /c/sjg/work/FreeBSD/current/src/include/rpcsvc for i386 ...
[Creating objdir /c/sjg/work/FreeBSD/current/obj/i386/include...]
[Creating objdir /c/sjg/work/FreeBSD/current/obj/i386/include/rpcsvc...]
Building /c/sjg/work/FreeBSD/current/obj/i386/include/rpcsvc/key_prot.h
Building /c/sjg/work/FreeBSD/current/obj/i386/include/.dirdep
Building /c/sjg/work/FreeBSD/current/obj/i386/include/rpcsvc/key_prot.h
..
Building /c/sjg/work/FreeBSD/current/obj/i386/include/rpcsvc/crypt.h
Building /c/sjg/work/FreeBSD/current/obj/i386/include/rpcsvc/.dirdep
Building /c/sjg/work/FreeBSD/current/obj/i386/include/rpcsvc/stage_files.RPCHDRS
Building /c/sjg/work/FreeBSD/current/obj/i386/include/rpcsvc/stage_files.prog
Building /c/sjg/work/FreeBSD/current/obj/i386/include/rpcsvc/stage_files.INCS
Building /c/sjg/work/FreeBSD/current/obj/i386/include/stage_files.INCS
Updating .depend: key_prot.h.meta klm_prot.h.meta mount.h.meta
Checking /c/sjg/work/FreeBSD/current/src/include/rpcsvc/Makefile.depend.i386: .depend
Updating .depend: .dirdep.meta osreldate.h.meta stage_symlinks.INCS.meta

Checking /c/sjg/work/FreeBSD/current/src/include/Makefile.depend.i386: .depend
Checking /c/sjg/work/FreeBSD/current/src/lib/msun for i386 ...
Checking /c/sjg/work/FreeBSD/current/src/lib/libedit for i386 ...
Checking /c/sjg/work/FreeBSD/current/src/lib/ncurses/ncurses for i386 ...
[Creating objdir /c/sjg/work/FreeBSD/current/obj/i386/lib/msun...]
[Creating objdir /c/sjg/work/FreeBSD/current/obj/i386/lib/ncurses/ncurses...]
[Creating objdir /c/sjg/work/FreeBSD/current/obj/i386/lib/libedit...]
Building /c/sjg/work/FreeBSD/current/obj/i386/lib/libedit/help.h
Building /c/sjg/work/FreeBSD/current/obj/i386/lib/libedit/.dirdep
Building /c/sjg/work/FreeBSD/current/obj/i386/lib/libedit/common.h
..
Building /c/sjg/work/FreeBSD/current/obj/i386/lib/libedit/readline.o
Building /c/sjg/work/FreeBSD/current/obj/i386/lib/msun/b_exp.po
Building /c/sjg/work/FreeBSD/current/obj/i386/lib/libedit/readline.po
Building /c/sjg/work/FreeBSD/current/obj/i386/lib/msun/b_log.po
Building /c/sjg/work/FreeBSD/current/obj/i386/lib/libedit/editline.c
Building /c/sjg/work/FreeBSD/current/obj/i386/lib/ncurses/ncurses/.dirdep
Building /c/sjg/work/FreeBSD/current/obj/i386/lib/ncurses/ncurses/stage_files.DOCS
..
..
Building /c/sjg/work/FreeBSD/current/obj/i386/lib/libedit/libedit.a
Building /c/sjg/work/FreeBSD/current/obj/i386/lib/ncurses/ncurses/make_hash
..
Checking /c/sjg/work/FreeBSD/current/src/lib/msun/Makefile.depend.i386: .depend
Checking /c/sjg/work/FreeBSD/current/src/lib/libc for i386 ...
[Creating objdir /c/sjg/work/FreeBSD/current/obj/i386/lib/libc...]
Building /c/sjg/work/FreeBSD/current/obj/i386/lib/libc/fork.S
Building /c/sjg/work/FreeBSD/current/obj/i386/lib/libc/read.S
..
Building /c/sjg/work/FreeBSD/current/obj/i386/lib/libc/freebsd4_uname.o
Updating .depend: .dirdep.meta stage_files.DOCS.meta curses.head.meta
Checking /c/sjg/work/FreeBSD/current/src/lib/ncurses/ncurses/Makefile.depend.i386: .depend
Building /c/sjg/work/FreeBSD/current/obj/i386/lib/libc/sysarch.o
..
Building /c/sjg/work/FreeBSD/current/obj/i386/lib/libc/crypt_clnt.So
Building /c/sjg/work/FreeBSD/current/obj/i386/lib/libc/libc.a
building static c library
Building /c/sjg/work/FreeBSD/current/obj/i386/lib/libc/libc_p.a
building profiled c library
Building /c/sjg/work/FreeBSD/current/obj/i386/lib/libc/libc.so.7
Building /c/sjg/work/FreeBSD/current/obj/i386/lib/libc/libc_pic.a
building shared library libc.so.7
..
Building /c/sjg/work/FreeBSD/current/obj/i386/lib/libc/stage_libs
Updating .depend: fork.S.meta read.S.meta write.S.meta open.S.meta
Checking /c/sjg/work/FreeBSD/current/src/lib/libc/Makefile.depend.i386: .depend
Checking /c/sjg/work/FreeBSD/current/src/bin/sh for i386 ...
Building /c/sjg/work/FreeBSD/current/obj/i386/bin/sh/.dirdep
Building /c/sjg/work/FreeBSD/current/obj/i386/bin/sh/builtins.c
Building /c/sjg/work/FreeBSD/current/obj/i386/bin/sh/mkinit.o
Building /c/sjg/work/FreeBSD/current/obj/i386/bin/sh/mknodes.o
Building /c/sjg/work/FreeBSD/current/obj/i386/bin/sh/mksyntax.o
Building /c/sjg/work/FreeBSD/current/obj/i386/bin/sh/sh.1.gz
Building /c/sjg/work/FreeBSD/current/obj/i386/bin/sh/mksyntax
Building /c/sjg/work/FreeBSD/current/obj/i386/bin/sh/mkinit
Building /c/sjg/work/FreeBSD/current/obj/i386/bin/sh/syntax.c
Building /c/sjg/work/FreeBSD/current/obj/i386/bin/sh/init.c
..
Building /c/sjg/work/FreeBSD/current/obj/i386/bin/sh/parser.o
Building /c/sjg/work/FreeBSD/current/obj/i386/bin/sh/sh
Building /c/sjg/work/FreeBSD/current/obj/i386/bin/sh/stage_files.prog
Updating .depend: .dirdep.meta builtins.c.meta mkinit.o.meta
Checking /c/sjg/work/FreeBSD/current/src/bin/sh/Makefile.depend.i386: .depend
 67.03 real 196.12 user 170.12 sys

and what does a Makefile.depend file look like?

Autogenerated - do NOT edit!

DEP_RELDIR := ${_PARSEDIR:S,${SRCTOP}/,,}

DEP_MACHINE := ${.PARSEFILE:E}

DIRDEPS = \
 include \
 lib/libc \
 lib/libedit \
 lib/ncurses/ncurses \

SRC_DIRDEPS = \
 bin/kill \
 bin/test \
 usr.bin/printf \

.include <dirdeps.mk>

.if ${DEP_RELDIR} == ${_DEP_RELDIR} && !exists(.depend)
local dependencies - needed for -jN in clean tree
arith_yylex.o: syntax.h
arith_yylex.po: syntax.h
builtins.c: shell.h
builtins.o: builtins.c
...
.endif

All the real magic is in dirdeps.mk which we'll look at in more detail later, but a few
things should be immediately obvious:

1. objdirs were created automatically. Note too that the objdirs are not within the src
tree. Ensuring generated files and sources are kept in separate trees allows for
targets like make destroy which are far more efficient than make clean.

2. no time was spent doing make depend
3. everything ran in parallel, but in the correct order. Each Makefile.depend*

contains enough local dependency information to allow a successful parallel build in
a clean tree.

The mk command

Everything you build seems to need its own make flavor and setup. The command mk is
just a wrapper script which conditions the environment and makes it easy to build for
different target machines, using the correct version of make:

$ cd bin/sh
$ mk -V .OBJDIR
/c/sjg/work/FreeBSD/current/obj/i386/bin/sh
$ mk-amd64 -V .OBJDIR
[Creating objdir /c/sjg/work/FreeBSD/current/obj/amd64/bin/sh...]
/c/sjg/work/FreeBSD/current/obj/amd64/bin/sh
$ mk-host -V .OBJDIR
[Creating objdir /c/sjg/work/FreeBSD/current/obj/freebsd9-i386/bin/sh...]
/c/sjg/work/FreeBSD/current/obj/freebsd9-i386/bin/sh
$ mk-host -V .MAKE
/homes/sjg/freebsd9-i386/bin/bmake-20110505

In its simplest form, the script simply searches upwards from the current directory until it
finds the file .sandbox-env, which contains environment settings, and also marks the

file:///Users/sjg/public/talks/obj/building-bsd.htm#dirdeps-mk

location of the top of the tree (or sandbox, known as $SB). The mk script sources,
.sandboxrc from various places and finally $SB/.sandbox-env, before running some
flavor of make.

When I build NetBSD's make I typically use mk-host to cause the build to use the host's
toolchain, headers and libs:

$ cd usr.bin/make
$ mk-host -V .OBJDIR
/var/obj/NetBSD/current/usr.bin/make
$ mk-host -V .MAKE
make

This setup is great if you're an Emacs user, since you typically only need to remember M-x
compile (I bind that to C-c m) and have it run mk, and whether you are building
FreeBSD, NetBSD, Junos or whatever, it just works.

Some definitions
Considering the venue, I expect most of you are familiar the the BSD build, and its
makefile syntax. Below are some definitions, some of which should be familiar.

.CURDIR

Is the value returned by getcwd(3) when make first starts. It is typically where
the makefile is read from.

.OBJDIR

Is the directory make is in when it starts building things. Make's predilection
for finding an object dir causes confusion for those unfamiliar with it.

The basic algorithm is (in Bourne shell):

for __objdir in ${MAKEOBJDIRPREFIX}${.CURDIR} \
 ${MAKEOBJDIR} \
 ${.CURDIR}/obj.${MACHINE} \
 ${.CURDIR}/obj \
 ${.CURDIR}
do
 if [-d ${__objdir} -a ${__objdir} != ${.CURDIR}]; then
 break
 fi
done

In bmake, makefiles can set .OBJDIR, this makes automated objdir creation
possible (from auto.obj.mk):

.if !defined(NOOBJ) && ${MKOBJDIRS:Uno} == auto
Use __objdir here so it is easier to tweak without impacting
the logic.
__objdir?= ${MAKEOBJDIR}
.if ${.OBJDIR} != ${__objdir}
We need to chdir
.if !exists(${__objdir}) && \
 (${.TARGETS} == "" || ${.TARGETS:Nclean*:N*clean:Ndestroy*} != "")
This will actually make it... Mkdirs is in sys.mk
__objdir:=${__objdir:!umask ${OBJDIR_UMASK:U002}; \
 ${ECHO_TRACE} "[Creating objdir ${__objdir}...]" >&2; \
 ${Mkdirs}; Mkdirs ${__objdir}; echo ${__objdir}!}

.endif
This causes make to use the specified directory as .OBJDIR
.OBJDIR: ${__objdir}
.endif
.endif

The Mkdirs function mentioned, works around the fact that in some
implementations; mkdir -p do not handle race conditions. When attempting
to build bin/cat and bin/sh in parallel and a clean tree, both makefiles will
run a mkdir -p command that will want to create ${OBJTOP}/bin, only one
will succeed, the other throws an error.

MAKESYSPATH

A colon separated list of directories which bmake will search for sys.mk. The
token .../ means here or above, which means that bmake -m
.../share/mk should just work in a typical BSD tree.

This is useful in conjunction with the sandbox idea, when building multiple
branches on the one machine.

MACHINE

Identifies the specific machine or CPU that we are building for.

MACHINE_ARCH

The architecture that matches ${MACHINE}, for example if MACHINE is xlr
then MACHINE_ARCH would be mips.

SB

As mentioned above ${SB} names the directory where mk found the file
.sandbox-env. It is simply the top of a work space.

SB_NAME

We refer to the basename of ${SB} often enough to give it its own variable.

SB_SRC

Usually ${SB}/src, we typically set SRCTOP to this.

SB_OBJROOT

Usually ${SB}/obj/, if ${SB} is on NFS, ${SB_OBJROOT} may be a symlink
to local storage. We typically set OBJTOP to this with ${MACHINE} appended.

HOST_OBJTOP

When building things for the host (the machine the build is running on), we
use an object directory that uniquely identifies it. We append
${HOST_TARGET} (eg. freebsd7-i386) to ${SB_OBJROOT}.

_CURDIR _OBJDIR

If we are playing games with turning .CURDIR and .OBJDIR into relative
paths, the original values are preserved in _CURDIR and _OBJDIR.

RELDIR

The relative path from SRCTOP to .CURDIR.

bmake additions

For those not familiar with the NetBSD build, bmake has a number of modifiers which
may be new. There are lots, but I shall only mention the ones that appear sufficiently
below to warrant introduction:

:@temp@string@

Is an in-line loop construct, which unlike .for is not evaluated when read,
and does not limit expansion to the loop iterator. Each word of the variable is
assigned to temp and then string is expanded. Insanely useful.

:Uvalue

If a variable is undefined, use value. Note that's undefined not empty. One can
however use:

${"${VARIABLE}":?if-set:if-empty-or-undefined}

:tsc

Use c as the separator between words.

:tA

Apply realpath(3) to each word.

I've added a lot of features to NetBSD's make to enable improvements in the Junos build
(of course they had to be generically useful too ;-). I have been repeatedly surprised, at
how quickly many of these improvements have been adopted by the NetBSD build.

I should point out that a number of NetBSD developers actively work on improving make,
and Juniper has benefited greatly from their efforts too.

Note: the :@ and :U mentioned above and a number of other useful modifiers were
adapted from the pmake found in OSF. The OSF development environment (ODE) did
some very cool things with them.

The following variables are also relevant to the discussion:

.MAKE.LEVEL

Defines the recursion level. The first instance of bmake will have
.MAKE.LEVEL == 0, sub-makes will have an incremented value.

.MAKE.MODE

The means of putting bmake into meta mode. More detail later.

.MAKE.MAKEFILE_PREFERENCE

Default is makefile Makefile, it is the list, in order of preference, of
makefiles that bmake will look for. Note that makefile describes any file read

by make which tells it what to do.

.MAKE.DEPENDFILE

The file that bmake automatically reads after the makefiles. Default is
.depend, but for meta mode we use
${.CURDIR}/Makefile.depend.${MACHINE}

.PARSEFILE

The basename of the makefile currently being read. That is the file the line
containing the reference to ${.PARSEFILE}. Any file read by make which
tells it what to do is a makefile.

.PARSEDIR

The directory where the current makefile was found. Applying :tA to this can
be very handy, as we shall see.

MAKE_VERSION

These days this is just the YYYYmmdd that represents the bmake version. A
number of makefiles in mk-files need to check this, to know whether certain
features will work.

For some crazy reason, when I first put this in NetBSD, the value was a tuple
that included when it was built. I think the idea was to be able to distinguish
bmake from the native make. Bad idea. Apart from being harder to utilize, that
caused problems for people trying to re-produce builds. So now NetBSD's
make only has it if the makefile defines it. In my own trees, I set it to the
mtime of CVS/Entries.

The net result is that my generic sys/NetBSD.mk has to guess values for
MAKE_VERSION if it is not defined.

History
I promised some history...

In the past, the typical BSD build process could be expressed as something like:

make obj
make includes
make depend
make libs
make all
make install

each of which would recurse their way down the tree processing SUBDIR in the order
listed etc. The whole process might be wrapped up in a target like make world or make
release.

The tree walks were originally beneficial - keeping the memory footprint of make
reasonable.

Some complained about the cost of the multiple tree walks, so a couple of the steps were
collapsed into:

make dependall

that is, as you walk the tree do make depend all in each directory. But it is still sub-
optimal, and making it run well in parallel is a challenge.

With the increased popularity of cross-building (especially if the target has an anaemic
CPU), the builds have grown additional phases like make hosttools.

When I started at Juniper at the beginning of 2000, FreeBSD 2.x was in use and we were
working on Junos 4.x. I wrote a document which describes the evolution of the Junos
build in terms of the major versions that changes were introduced with. The following
sections provide a brief summary.

It is worth noting that Juniper routers, generally use separate CPUs for the control and
data planes. The data plane is where all the super cool, proprietary ASICs live. The control
plane is where the BSD bit of Junos runs, much of our discussion is only concerned with
that. Until recently the data plane used its own build environment (using gmake) and none
of the cool features below applied to it ;-)

Junos 4.x (2000)
The 4.x Junos build was sub-optimal, and caused a number of problems for developers.

Up to this time, Junos was built as a small number packages added to a stock FreeBSD
install. All the bits were handled independently. The data plane build had been developed
on SunOS, so bore no relationship to the BSD build.

One of my initial projects was to design an improved build which would integrate
everything, and facilitate subset checkouts and builds, with zero impact to the current
official builds.

While that zero impact requirement caused some contortions, the result was a big
improvment.

This build introduced:

1. The concept of a sandbox and the commands;

mk to launch make after conditioning the environment
mksb to prepare a sandbox and checkout the sources.
workon to run a shell within the sandbox

These tools were all inspired by the OSF Development Environment (ODE), but the
implementations were simple scripts which allowed a lot more flexibility.

Using the sandbox model, developers could switch from working on one branch to
another and use the correct tools and configuration without thought.

2. A tree layout which was basically the BSD tree, with a new top-level directory
containing the Juniper bits.

3. Use of bmake; I added a collection of variable modifiers from ODE to NetBSD
make, to enable the design.

Junos 5.0 (2001)
This was a major set of changes, which coincided with a migration to FreeBSD 4.2 and
from a.out to ELF. A number of interesting things were introduced:

1. To avoid bugs from people forgetting to make includes at appropriate times, the
build was changed such that all headers were used from where they live.

That is, if you were using libc, you might have a -I${SRC_libc}/include etc in
CFLAGS.

For Juniper libraries we introduced the notion that ${SRC_libfoo}/h was where all
the public headers would be - so we could avoid accidentally picking up private
ones.

dpadd.mk took care of working out all the above, based on bsd.libnames.mk
entries (see below).

2. Similarly, libraries were used from where they were built. No more make install
during the build.

3. We introduced the notion of packaging our s/w as compressed ISO images.

4. The idea of staging files to a $DESTDIR was dropped. The ISO images were built
from a manifest which identified the location of an object file in the tree, and the
desired location within the ISO image.

5. The top-level makefiles changed quite radically, introducing prefixes such that the
same dependency information could be leveraged for checking out subsets of the
code base, as for building it.

These makefiles were not my idea btw. While not as elegant perhaps, they were
easier to explain than the key makefile that drove my 4.x build, and they achieved a
largely similar result. The basic idea is still in use today.

6. We used autodep.mk which leveraged gcc -M* to eliminate the need for a separate
make depend.

The above all worked very well. Builds were faster due to avoiding lots of tree walks, and
copying of binaries, people could easily build the entire system in about an hour, and life
was good.

Manually maintaining the dependency information was error prone though, and eventually
we hit problems with command line limits in FreeBSD 4.x. The NFS bugs that we had
encountered in FreeBSD 2.x, were gone and we had again allowed folk to use NFS for
building. The longer pathnames that resulted (from amd) blew the command line limits.

The solution was to turn .CURDIR and .OBJDIR into relative paths - saving the original
values in _CURDIR and _OBJDIR. This meant that the command line lengths were
independent of tree location, and the debug symbols that ended up in object files were (in
some cases) more useful.

Junos 7.0 (2004)
A new set of top-level makefiles were introduced. The top-level Makefile included a

bunch of component makefiles that did specific things. The goal was to improve
maintainability.

Object dir creation was automated using auto.obj.mk.

Support for backing sandboxes was introduced. This allowed a subset checkout, to
leverage a pre-built tree to provide missing headers, libraries and binaries. This same
functionality enabled the Junos SDK a couple of years later.

A means of automatically deriving the bulk of the tree dependencies from the the manifest
files - which controlled what went into the ISO images, was added.

It is worth stressing that the Junos build had long since abandoned the notion of using
SUBDIR and tree walks. Rather, the top-level makefiles generally visited the leaves of the
tree directly, based on the dependency information known to the top-level.

Thus automating the collection of that dependency information allowed for a big
improvement in build reliability. We stored this information in the SCM, in a single
directory, and were able to leverage it for fine-grained subset checkouts. But this
eventually became a hot-spot for conflicts as the number of developers increased.

At this time, there were three "architectures" that Junos was built for. The control plane
software had to be built for i386 and mips, and the data-plane was its own little world.
Allowing each of these to build in parallel allowed us to pretty well consume all the CPU
available at the time. Which was handy, because much of the FreeBSD 4.x tree could not
handle building in parallel - at least not without an explicit make depend.

Junos 9.3 (2008)
By this time we had upgraded the FreeBSD code base to 6.x

We removed the captured dependency information from the SCM. This avoided the
conflict hot-spot, and allowed the data to be collected on a per $MACHINE basis (a number
of new architectures had been added). The downside was that doing sub-set checkouts
became a bit more complicated.

Apart from new architectures that we were building the control plane software for, a
number of low-end hybrid systems had evolved which introduced dependencies between
the the data and control plane builds, such that the separate build for the data plane was
becoming an issue that would need to be fixed.

Today
We are in the second stage of migrating the build to meta mode. The gmake build for the
data plane, has been replaced with bmake and meta mode and already showing benefits.

The BSD portion of the tree, can also run in meta mode, and the current build is useful for
bootstrapping the Makefile.depend files, but final conversion requires re-working some
key makefiles which currently break the one build product per directory dictum, and hence
interfere with capturing complete and stable dependencies.

Once conversion is complete, we expect to achieve a much higher degree of parallelism
than is currently possible. Any build performance improvements though are a bonus. The
primary benefit is improved reliability of update builds and reduction of build complexity.

file:///Users/sjg/public/talks/obj/building-bsd.htm#one-build-product-per-directory

Desirable build features
The following sections discuss some features that have proven useful over a number of
years. All of these are retained in our next evolution.

Separating sources and objects
Too much flexibility, can add greatly to the cost of supporting a build. While some people
may like their objects and src in the same directory, we don't give them that option (any
more ;-)

Keeping in mind we don't want the default objdir of ${.CURDIR}/obj/, the simplest way
to keep objects separate from the source, is by using MAKEOBJDIRPREFIX:

$ export MAKEOBJDIRPREFIX=/var/obj/$USER
$ mkdir -p $MAKEOBJDIRPREFIX
$ pwd
/homes/sjg/work/sb/src
$ make obj
$ make -V .CURDIR
/.amd/server/homes/sjg/work/sb/src/bin/cat
$ make -V .OBJDIR
/var/obj/sjg/.amd/server/homes/sjg/work/sb/src/bin/cat

While MAKEOBJDIRPREFIX is handy, the paths that result can be hideous especially if
.CURDIR is on an automounted NFS.

Since bmake allows applying modifiers to MAKEOBJDIR we use that to achieve much
neater results:

$ export MAKEOBJDIR='${.CURDIR:S,${SRCTOP},${OBJTOP},}'

with suitable definitions for SRCTOP and OBJTOP, for example:

$ export SRCTOP=$SB/src
$ export OBJTOP='${OBJROOT}${MACHINE}'
$ export OBJROOT=/var/obj/$USER/$SB_NAME
$ make -V .OBJDIR
[Creating objdir /var/obj/sjg/sb/i386/bin/cat...]
/var/obj/sjg/sb/i386/bin/cat
$ make -V .CURDIR
/.amd/server/homes/sjg/work/sb/src/bin/cat

One downside of both MAKEOBJDIRPREFIX and MAKEOBJDIR is that they need to be set in
the environment. While bmake has the ability to export and even completely wipe the
environment, getting the right value for MAKEOBJDIR exported by bmake is a challenge. If
you use a wrapper like mk anyway, this isn't an issue.

Some people still like to use mk objlink to get ./obj as a symlink to .OBJDIR for
convenience. These symlinks are ignored by the build.

Once you have a well defined location for SRCTOP and OBJTOP, many things become
simpler.

For example, one can simply assert:

CRYPTOBJDIR= ${OBJTOP}/secure/lib/libcrypt

rather than (from FreeBSD's secure/Makefile.inc):

.if exists(${.CURDIR}/../../lib/libcrypt/obj)
CRYPTOBJDIR= ${.CURDIR}/../../lib/libcrypt/obj
.else
CRYPTOBJDIR= ${.CURDIR}/../../lib/libcrypt
.endif

which is just wrong. I've seen more elaborate examples which invariably guess the wrong
answer, but it was long ago. The above is still around.

As noted in the introduction, if your objdirs are not within the src tree, then cleaning
becomes a simple matter of:

destroy:
.if ${.OBJDIR} != ${.CURDIR}
 (cd ${.CURDIR} && rm -rf ${.OBJDIR})
.endif

Actually, it is quicker to run an rm -rf per ${MACHINE} in parallel but you get the idea.

Keeping the src tree clean, also helps when trying to use tools to do pre-commit checks on
a tree. For example, that all the srcs have been added to the SCM.

That is, look at the diff to be committed, build all the directories referenced, then visit
them and their pre-requisits and check that none of the src files are unknown to the SCM.

Automated dependency collection
For over a decade, the Junos build has used autodep.mk to avoid the need for a separate
make depend. This has generally worked very well.

The basic idea is to have gcc -M* write dependency info to ${.PREFIX}.d and after a
successful compilation, munge those together to form .depend.

Originally, ${.PREFIX}.d was selected so that it could play nice with .SUFFIX rules, but
presents a problem in that compiling foo.o and foo.po will both produce the same
foo.d file. Using .ORDER to prevent foo.o and foo.po from being compiled at the same
time avoids problems.

A different model is used by auto.dep.mk, using .d.${TARGET} as in .d.foo.o and
.d.foo.po avoids any contention, at the cost of duplicate data in .depend and not
working with .SUFFIX rules (which is probably an advantage).

In meta mode, which I'll get to in a while, we use .depend completely differently.

Directory based dependencies
Not only are tree walks (using SUBDIR) expensive, especially when building on NFS, it
may be impossible to adequately order the build steps without resorting to phases like
make includes and make libraries.

In a BSD source tree, most Makefiles use DPADD to indicate their pre-requisites. As I
mentioned earlier, the Junos build uses the libraries from where they are built. Further,
leveraging the relatively simple relationship between object and src directories discussed

earlier, it becomes a simple matter to derive the the src directory for a library, from its
object dir.

The magic is all handled by a makefile called dpadd.mk. It handles the following macros
for each library (eg libfoo.a) given that LIBFOO is set to the absolute path of the library:

OBJ_libfoo

Trivial - ${LIBFOO:H} but completes the set and simplifies the descriptions
below.

SRC_libfoo

The src directory for libfoo.a defaults to
${OBJ_libfoo:S,${OBJTOP},${SRCTOP},}

INCLUDES_libfoo

The -I values needed for the public api. If the directory ${SRC_libfoo}/h
exists, then this defaults to -I${SRC_libfoo}/h, otherwise all bets are off
and the default is -I${SRC_libfoo} -I${OBJ_libfoo}

The above are computed for any ${LIB*} which appears in one of:

SRC_LIBS

Names libs which we just need includes from, so:

SRC_LIBS += ${LIBFOO}

results in:

CFLAGS += ${INCLUDES_libfoo}

DPADD

As for SRC_LIBS and of course, we require that the specified libs exist.

DPLIBS

Directory based dependencies rely on accurate information.

Having observed that many people add -lgoo to LDADD without adding
${LIBGOO} to DPADD, we use DPLIBS to replace both. That is:

DPLIBS += ${LIBGOO}

is exactly equivalent to:

DPADD += ${LIBGOO}
LDADD += ${LIBGOO:T:R:S,lib,-l,}

So given something like this in bsd.libnames.mk:

LIBC ?= ${OBJTOP}/bsd/lib/libc/libc.a
LIBCRYPT ?= ${OBJTOP}/bsd/lib/libcrypt/libcrypt.a
LIBPAM ?= ${OBJTOP}/bsd/lib/libpam/libpam/libpam.a
...
INCLUDES_libpam += -I${CONTRIB}/openpam/include

and a makefile such as in bsd/usr.bin/login, which has:

DPLIBS += ${LIBCRYPT} ${LIBMD} ${LIBPAM} ...

The dpadd.mk in mk-files says:

$ mk dpadd
bsd/usr.bin/login: bsd/lib/libcrypt/libcrypt.a \
 bsd/lib/libmd/libmd.a \
 bsd/lib/libpam/libpam/libpam.so \
 ... \
 bsd/lib/libc/libc.a

which is interesting, but we can do more with the data. The version in Junos provides a lot
more information:

$ mk dpadd
start-of-clues

DPDEPS_bsd/lib/libc += bsd/usr.bin/login
DPDEPS_bsd/lib/libcrypt += bsd/usr.bin/login
DPDEPS_bsd/lib/libmd += bsd/usr.bin/login
DPDEPS_bsd/lib/libpam/libpam += bsd/usr.bin/login
...

end-of-clues

DPADD_bsd/usr.bin/login = \
 bsd/lib/libc \
 bsd/lib/libcrypt \
 bsd/lib/libmd \
 bsd/lib/libpam/libpam \
 ...

${P}bsd/usr.bin/login: ${DPADD_bsd/usr.bin/login:S,^,${P},}

DPCVS_bsd/usr.bin/login = \
 bsd/sys \
 bsd/contrib/openpam \

cvs-bsd/usr.bin/login: ${DPCVS_bsd/usr.bin/login:S,^,cvs-,}

which can be captured, and used by the top-level makefiles to know that to build
bsd/usr.bin/login one must first visit the list of libraries. It also lets us know what
needs to be checked out of the SCM to be able to build login (in which case P=cvs-)
and also build a picture of the clients of each library.

A simple script can take the above information, and visit each of the pre-requisite dirs,
and run bmake dpadd there too and thus gather the hierarchy of dependencies needed.

It then becomes possible for the top-level makefile to visit the leaves of the tree directly in
optimal order to build a given target.

As mentioned earlier, we originally captured this information in the SCM, but eventually
removed it (due to too many conflicts), and generated it dynamically on a per ${MACHINE}
basis.

In meta mode, we take this idea a step further.

Building in parallel

There's no such thing as building too fast. Doing a number of things in parallel helps soak
up every available CPU second that would otherwise be spent waiting for I/O.

Running make in jobs mode does that. The optimal max jobs number varies due to factors
like the number of CPUs available, how many disks are being striped for the build space,
and what else is happening on the box.

Going fast though, doesn't matter if you get incorrect results.

Bmake works in two modes, jobs mode and compat mode. In compat mode, targets are
evaluated depth first in the order listed. In jobs mode, targets are evaluated breadth first
and in parallel.

For example:

LIB = fool

SRCS = parser.c file1.c file2.c file3.c

parser.c: parser.y
 ${YACC} -d -o ${.TARGET} ${.IMPSRC}
 mv t.tab.y ${.TARGET:T:R}.h

.include <bsd.lib.mk>

In compat mode, everything just works, because the SRCS are built sequentially - in the
order listed. So everything associated with producing parser.o will happen before
file1.o is attempted.

In jobs mode (e.g. mk -j8), things can rapidly fall apart. With just the information listed,
each of the SRCS will be compiled in parallel. If any of file*.c includes parser.h, then
success will be random depending on whether the mv step of the script above completes
before any of the compilations of file*.c need it. This is called a race condition and
more available CPUs typically exacerbates the situation.

To avoid that race condition, more explicit dependencies are needed. This however, is
often done incorrectly:

wrong: this can cause YACC to be run twice - at the same time!
parser.c parser.h: parser.y
 ${YACC} -d -o ${.TARGET:T:R}.c ${.IMPSRC}
 mv t.tab.y ${.TARGET:T:R}.h

file1.o: parser.h

The above code introduces a different race condition - both parser.c and parser.h can
trigger running the same script (at about the same time) which usually ends in tears.

The next attempt might be:

wrong: likelihood of circular dependencies
parser.h: parser.c
parser.c: parser.y
 ${YACC} -d -o ${.TARGET:T:R}.c ${.IMPSRC}
 mv t.tab.y ${.TARGET:T:R}.h

file1.o: parser.h

but that can result in cyclic dependencies if parser.c includes parser.h and this ends

up reflected in .depend.

The best bet would be:

parser.h: parser.y
 ${YACC} -d -o ${.TARGET:T:R}.c ${.IMPSRC}
 mv t.tab.y ${.TARGET}

parser.c: parser.h

file1.o: parser.h

This avoids the race conditions as well as the chance of cyclic dependencies.

In the current Junos build, leaf makefiles do not run in jobs mode by default. So the
parallelism is mainly at the top-level. For small leaf directories this does not matter.

For big libs like libc it does matter. There is therefore a USE_JOBS knob that can be set
in a makefile, to indicate that it can build in jobs mode, and this gets picked up by the top-
level (via the clues printed by mk dpadd), so all is not lost. The speedup for big libs like
libc is significant.

In meta mode, we capture in the Makefile.depend* sufficient information to ensure a
successful parallel build in a clean tree. Thus the default will be to allow leaf makefiles to
build in meta jobs mode.

Even better, you can do a simple mk in compat mode while bootstrapping a new makefile,
to capture the local dependencies, and it will then generally just work in jobs mode.

Captive toolchains
Some things get used many times, but changed rarely. This is especially true for most of
the build tools, like the compilers and make. We use captive versions where possible.

Unlike Open Source teams, we have a need to be able to reproduce a build of Junos up to
10 years after it was shipped, so managing captive toolchains is taken seriously.

Our compiler team qualify a new compiler and post the result to a tools collection in a
versioned directory. Once posted it is never touched again.

The same goes for tools like bmake. I will import a new version, and after a suitable
qualification period, someone in the tools team will build and post it.

A toolchains.mk can then have things like:

BMAKE_VERSION ?= 20101215
BMAKE = ${TOOLS_PREFIX}/bmake/${BMAKE_VERSION}/bin/bmake

and developers generally don't waste time building compilers, make and similar tools.

NetBSD's build provides neat hooks for building toolchains and re-using them, even using
externally maintained cross-toolchains by setting EXTERNAL_TOOLCHAIN.

Some issues

Too many -I's and -L's
As mentioned above, for the last decade we have included headers from where they are
edited, and linked libraries from where they are built. While this has been very successful
in meeting the original goals, our code base has grown a little, and in some cases the
number of -I's being used seems excessive.

Each -I results in a directory stat(2) which can be expensive on NFS. More importantly
from an architecture point of view, all the -I's and -L's make it too easy to introduce name
collisions. When all the headers and libs are being installed into common directories name
collisions become immediately obvious.

When you never install the libs or headers, you may not notice name collisions until much
later. While this has not been a big issue, the potential remains.

The primary motive for the current model was the difficulty of ensuring that updated
headers and libs were installed when they should be (at least when developers are not
doing top-level builds), and avoiding the confusion that can result.

With meta mode, though, we can eliminate that problem, and thus allow revisiting the
current model. This will happen in a phased manner.

Too much complexity
The Junos code base has probably tripled in size, since the nice clean top-level makefiles
were introduced in 7.0. While most of the leaf Makefiles remain nice and simple, the
complexity of the top-level makefiles has gone up dramatically.

For example the following (simplified version):

Run a sub-make with MACHINE and MACHINE_ARCH set appropriately.
_BUILD_ARCH_USE: .USE .PHONY .MAKE
 @echo "[Building __${.TARGET} for ${@:E} ...]"
 @(cd ${.CURDIR} && MACHINE=${.TARGET:E} \
 MACHINE_ARCH=${MACHINE_ARCH.${.TARGET:E}} \
 ${.MAKE} __$@)

.for m in ${ALL_MACHINE_LIST}

.if ${MACHINE} == $m
build_arch.$m: __build_arch.$m
make sure this exists
__build_arch.$m:
.else
build_arch.$m: _BUILD_ARCH_USE
.endif
.endfor

can be used thus:

all: build_arch.i386 build_arch.mips

__build_arch.i386: lots-of-stuff
__build_arch.mips: lots-of-stuff

to build lots-of-stuff for both i386 and mips.

Of course, the top-level makefile is used to build many individual package targets too -
since developers spend a lot of their time building only for the platform they are currently

working on.

It is quite common for a platform target to need things built for multiple machine types
(seems every card needs a unique CPU ;-) It is all too easy to introduce something like:

some-thing: build_arch.abc
__build_arch.abc: one-thing and-another
and-another: build_arch.xyz
__build_arch.xyz: lots-more-stuff

which works fine while building just and-another or some-thing, but if we have
elsewhere:

every-thing: ${ALL_MACHINE_LIST:%=build_arch.%}

then while building every-thing, which depends on build_arch.abc and
build_arch.xyz, the dependency for and-another above will result in two separate
invocations of bmake __build_arch.xyz in parallel, which is bound to end in tears.

By the time we complete our migration to meta mode, all that complexity will be gone -
replaced by dirdeps.mk

Manual maintenance is unreliable
Apparently not all C programmers are build geeks.

My basic rules for writing leaf makefiles are:

1. Do not put anything in your makefile that you don't need
2. Do not put anything in your makefile that you cannot explain the need for. Ie. if you

cannot explain it, you don't need it, remove it.
3. Do not cut/paste anything from your friend's makefile (see #1).

Note: #2 does not mean that you should remove everything from an existing makefile that
you don't understand the first time you look at it.

Sadly, few people read as far as #3. In fact it seems that some will seek out the most
complex possible makefile to cut/paste from.

The result is that makefiles (like C code), can accrete dependencies which in many cases
are unnecessary.

The less humans need to maintain, the better.

A top-level build needed
The Junos build leverages a lot of hosttools (those compiled for the build host), to
generate code, and other useful things.

As a result, the current build requires some form of top-level build be performed in a
clean tree, before developers get into their edit, compile, test cycle. This is considered
irksome.

As our earlier example showed, this is not necessary with meta mode.

file:///Users/sjg/public/talks/obj/building-bsd.htm#dirdeps-mk

Insufficient parallelism
In the good old days, just being able to run the top-level makefiles in paralllel for two or
three different architectures pretty well consumed a build server.

While the build machines have gotten much faster, the build itslef has become more
complex. For example, if for packaging requirements machine-A, depends on products
from machine-B, then none of machine-A can start until all of machine-B is complete. A
couple of such dependencies can put a huge dint in achievable parallelism. The 15min load
average is a good clue as to what is being achieved.

Introducing Meta Mode
Ok, so just what is meta mode? It is quite simple really.

When bmake is run in meta mode, it creates a .meta file for each target.

A .meta file simply collects information about the target that bmake is building. This
includes the expanded commands run, the environment (optional), any command output,
and finally a capture of interesting system calls performed by the commands. Such
information can have many uses, not least of which is automating capture of tree-wide
dependencies.

The basic idea of .meta files originated in John Birrell's build which he started as a
project to improve the FreeBSD build before joining Juniper. John also wrote the filemon
module for FreeBSD. The build prototype hard-coded all build behavior, and required all
new makefiles which made transition (and hence adoption) challenging.

The meta mode in bmake just provides the basic functionality leveraging the same kernel
module (also available in NetBSD), and leaves the usage/policy up to the makefiles, most
of which do not need to change at all.

This added flexibility allows for a reasonably smooth transition. The current Junos build
has been able to leverage meta mode for over a year, and while the data plane build
(which used to use gmake), has been migrated to build with bmake in meta mode, further
work is needed to complete the transition.

A number of makefiles will be mentioned below. Some have a meta. prefix in their name
- to distinguish them from other variants, and also to aid in their use along side the other
variants since fully leveraging meta mode can require changes to the tree and thus
migration may take a while.

Makefile.depend since Junos is cross-built for multiple target machines, we set
.MAKE.DEPENDFILE=Makefile.depend.${MACHINE} but we use the unqualified
name in most discussions. We can also use the unqualified name for manually
edited files which are not machine dependent. dirdeps.mk does the right thing.
dirdeps.mk included by Makefile.depend is where the real magic happens. This
may not be one of those makefiles you want to read without plenty of caffeine
handy. It is however pretty well commented, and stable (no need to touch it).
meta.autodep.mk does the same thing as the autodep.mk that bmake has had for
many years, but leverages meta mode.
gendirdeps.mk included by meta.autodep.mk when Makefile.depend needs to
be updated.

file:///Users/sjg/public/talks/obj/building-bsd.htm#makefiles
file:///Users/sjg/public/talks/obj/building-bsd.htm#makefile-depend
file:///Users/sjg/public/talks/obj/building-bsd.htm#dirdeps-mk
file:///Users/sjg/public/talks/obj/building-bsd.htm#dirdeps-mk
file:///Users/sjg/public/talks/obj/building-bsd.htm#meta-autodep-mk
file:///Users/sjg/public/talks/obj/building-bsd.htm#gendirdeps-mk

meta.subdir.mk the traditional bsd.subdir.mk does not fit into the build style
enabled by meta mode, but we still want a means of launching a build in a non-leaf
directory.

I should point out that most of the above rely heavily on the functionality of bmake.

Rationale
Why a new mode for make? To aid the automated capture of dependency information, and
thus help optimize build performance, while minimizing the changes needed. That's not to
suggest that it is a good idea to support building the same tree multiple ways beyond a
transition period.

Optimizing build performance means doing as little as possible, and on modern CPUs
doing as much of it in parallel as possible. However, being quick is useless if the results
are incorrect. Meta mode helps on all these fronts.

avoid make depend

As noted above, avoiding make depend improves build speed.

For many years autodep.mk has leveraged the gcc -M* flags to gather dependency
information as a side effect of compilation. This works fine for most makefiles, but not all
when trying to build in parallel. Makefiles which omit important dependencies require
make depend or equivalent before they can be successfully built in parallel.

By capturing local dependencies into Makefile.depend (see the example in
Makefile.depend), we can successfully build a clean tree in parallel, without having to fix
all the makefiles.

Also by leveraging filemon we can capture accurate dependencies for all targets, not just
those built by gcc.

avoid unnecessary dependencies

There are also advantages to be had when re-building a tree. The fact that in meta mode,
bmake can compare the actual expanded command lines when deciding if a target is out-
of-date, means that one can avoid doing things like:

if any of the makefiles have changed we need to regenerate
this - "just in case"
generated.h: ${.MAKE.MAKEFILES:N.depend}
${OBJS}: generated.h

which can often lead to lots of unnecessary re-compilation.

detect unnecessary dependencies

In meta mode, we can use DPADD for bootstrapping DIRDEPS, but otherwise it is not
necessary.

Subsequent builds follow the actual dependencies recorded in Makefile.depend, so
when a leaf makefile has a spurious entry in DPADD it can cause the build to fail with:

bmake-20110306: don't know how to make libbogus.a

file:///Users/sjg/public/talks/obj/building-bsd.htm#meta-subdir-mk
file:///Users/sjg/public/talks/obj/building-bsd.htm#makefile-depend
file:///Users/sjg/public/talks/obj/building-bsd.htm#filemon

This is useful during the transition phase, because until you fully cut-over to meta mode,
cleaning out those spurious entries reduces dependencies and improves the build speed.
Later, you can simply ignore DPADD.

tree walks don't always cut it

Ideally we want to build the tree in a single pass.

Apart from being inefficient, using bsd.subdir.mk to walk a tree, can be a challenge if
various leaf directories have dependencies on each other.

As noted, the Junos build has for many years made use of tree-wide dependencies to visit
the leaf nodes of the tree directly - in the order required, with a high degree of parallelism.

The model described here allows the same functionality, but with less overhead and in a
more generic manner. Just as autodep.mk collects the dependencies of a directory as a
side effect of building, in meta mode we also collect the tree dependencies as a side effect
of building, and running meta2deps.

Of course one still needs to be able to launch a build in a non-leaf directory, so
meta.subdir.mk supports that.

ALL_MACHINES

Another useful trick enabled by having Makefile.depend.${MACHINE} is that one can
(from any location) do:

mk -DALL_MACHINES

to tell dirdeps.mk to get a list of all the Makefile.depend.* in the current directory, and
for each ${machine} add ${.CURDIR}.${machine} to the initial DIRDEPS. Thus one
can easily check if a change, breaks any of the supported architectures.

If there is no Makefile.depend.* in the current directory, but SUBDIR is defined,
meta.subdir.mk finds all the Makefile.depend.* below.

sub-set checkouts

As noted below, in addition to capturing DIRDEPS (those directories which must be built
before the current one), we can also capture SRC_DIRDEPS (those directories other than
the current one, which must be present), which can be used to drive logic to checkout the
minimal source needed to build a given directory.

Building in meta mode
Meta mode is enabled by the keyword meta appearing in .MAKE.MODE.

Writing .meta files

Generally speaking, for each target to be made, a .meta file is created. This is normally
named ${.TARGET}.meta. That is if cat is made from cat.o then, cat.o.meta and
cat.meta will be used.

file:///Users/sjg/public/talks/obj/building-bsd.htm#meta-subdir-mk
file:///Users/sjg/public/talks/obj/building-bsd.htm#dirdeps-mk
file:///Users/sjg/public/talks/obj/building-bsd.htm#meta-subdir-mk
file:///Users/sjg/public/talks/obj/building-bsd.htm#make-mode

If the target is flagged .PHONY, .MAKE or .SPECIAL (eg. .BEGIN, .END, .ERROR), then a
.meta file is not created unless the target is also flagged .META.

A .meta file is never created if the target is flagged .NOMETA.

If for some reason, a file is being generated outside of the current object dir the meta file
will be named for the absolute path of the target with all / replaced with _.

Normally, if .OBJDIR is the same as .CURDIR, then .meta files will not be created.
Adding curdirOk=yes to .MAKE.MODE overrides this, which can be handy when
launching a sub-make in .OBJDIR with a generated makefile.

In each .meta file bmake records:

the expanded command line, prefixed with CMD.
the environment, prefixed with ENV. (this is optional, see .MAKE.MODE).
the current directory prefixed with CWD.
the target, prefixed with TARGET.
the command output preceded by the line -- command output -- This can be
extremely useful in diagnosing build breaks. See Error handling below.
syscall data collected from filemon preceded by the line -- filemon acquired
metadata --

Bmake appends the name of each .meta file [re]created, to the variable
.MAKE.META.CREATED as well as .MAKE.META.FILES. These variables are not used
directly by bmake but allow for simple auto dependency extraction.

Also, in meta verbose mode, whenever a .meta file is [re]created the variable
.MAKE.META.PREFIX is expanded and printed (if not empty). The default value is
Building ${.TARGET:H:tA}/${.TARGET:T}.

Reading .meta files

When evaluating targets, if bmake has not already decided to re-build the target, it
consults the relevant .meta file, processing stops as soon as an out-of-date decision is
made.

You can use the debug flag -dM to have bmake explain its decisions.

First it compares the CMD entries with the ones currently associated with the target. If the
number of commands is different, the target is considered out-of-date. If any expanded
command is different and .MAKE.MODE did not contain ignore-cmd and the target was
not flagged .NOMETA_CMP, and the ${.OODATE} macro was not used, the target is
considered out-of-date.

Next the sycall data is consulted. For each E and R entry, the pathname's modification time
is checked and if newer than the target, it is considered out-of-date.

If .MAKE.META.BAILIWICK is defined, it provides a list of prefixes which describe the
scope of control for bmake. For 'L' and 'W' entries that create files within said boundary
but outside of .OBJDIR, we check if the target file still exists. If not, it is added to a list of
potentially missing files. If a subsequent 'M' or 'D' entry explains the missing file, it is
removed from the missing list. If the list is not empty by the time we reach the end of the
.meta file, the target is considered out-of-date.

file:///Users/sjg/public/talks/obj/building-bsd.htm#make-mode
file:///Users/sjg/public/talks/obj/building-bsd.htm#error-handling
file:///Users/sjg/public/talks/obj/building-bsd.htm#filemon
file:///Users/sjg/public/talks/obj/building-bsd.htm#extracting-dependencies
file:///Users/sjg/public/talks/obj/building-bsd.htm#make-mode

The name of each .meta file evaluated, is appended to the variable .MAKE.META.FILES.

Performance

Re-processing .meta files does add overhead to the build. There are potentially a lot more
stat(2) calls performed, especially when nothing needs to be done. This is a good argument
for avoiding unnecessary #include statements in C code.

For example, building libc generates nearly 3000 objects. On a given machine, in normal
mode if bmake takes about 5 seconds to decide there is nothing to do, in meta mode, it
will take 6 seconds to reach the same conclusion. Nothing to do is the worst case from the
overhead point of view.

By contrast, when building a clean tree, generating the .meta files appears to be slightly
faster (not statistically significant) compared to *.d files with gcc -M*. Considering all
the extra information collected, this is good.

The more common case of re-building after some changes have been made, is where the
benefits are seen. The ability to ensure everything that needs to be rebuilt (and only those)
throughout the tree, whether it improves build times or not, reduces the time spent
working out why something didn't work as expected.

When the entire tree can run in meta mode, we can generally improve the parallelism of
the build. With meta mode, we can easily express dependencies in terms of both machines
and directories - allowing much better parallelism for the problem cases outlined earlier.

Error handling
In 2001 I introduced a continuous build system (sisyphus - a bit like tinderbox) to find and
report build breaks. The system has grown from a single node to a large cluster of
machines. A critical aspect of this system is its ability to analyze build breaks and identify
the offending commit. The error handling provided in meta mode makes that task simpler.

When a target fails, bmake will set .ERROR_TARGET to its name and in meta mode,
.ERROR_META_FILE to the name of the associated .meta file.

These can be leveraged either by a .ERROR target, or simply included in the
MAKE_PRINT_VAR_ON_ERROR list which bmake will print on error.

The fact that .ERROR_META_FILE names a file containing both the command output -
presumably including any errors, as well as a record of all the files read, means that
automated build break diagnosis can be greatly simplified.

For example (deliberately induced error):

Meta data file /h/obj/NetBSD/5.X/usr.bin/make/make.o.meta
CMD cc -O -DMAKE_NATIVE -c /amd/mnt/swift/host/c/sjg/work/NetBSD/5.X/\
src/usr.bin/make/make.c
CWD /h/obj/NetBSD/5.X/usr.bin/make
TARGET make.o
-- command output --
/amd/mnt/swift/host/c/sjg/work/NetBSD/5.X/src/usr.bin/make/make.c:2:21: \
 error: no-such.h: No such file or directory
*** Error code 1
-- filemon acquired metadata --
filemon version 2
Target pid 5089

V 2
E 5175 /usr/bin/cc
R 5175 /etc/ld.so.conf
R 5175 /usr/lib/libc.so.12
W 5175 /var/tmp//cceNCjUd.s
E 5436 /usr/libexec/cc1
R 5436 /etc/ld.so.conf
R 5436 /usr/lib/libc.so.12
R 5436 /amd/mnt/swift/host/c/sjg/work/NetBSD/5.X/src/usr.bin/make/make.c
W 5436 /var/tmp//cceNCjUd.s
R 5436 /usr/share/nls/nls.alias
R 5436 /usr/share/nls/C/libc.cat
R 5436 /usr/include/sys/cdefs.h
R 5436 /usr/include/machine/cdefs.h
R 5436 /usr/include/sys/cdefs_elf.h
R 5436 /amd/mnt/swift/host/c/sjg/work/NetBSD/5.X/src/usr.bin/make/make.h
R 5436 /usr/include/sys/types.h
...
R 5436 /amd/mnt/swift/host/c/sjg/work/NetBSD/5.X/src/usr.bin/make/job.h
X 5436 1
D 5175 /var/tmp//cceNCjUd.s
X 5175 1
Bye bye

We can have something like:

meta_error_log = ${SB}/error/meta-${.MAKE.PID}.log

.ERROR:
 -@["${.ERROR_META_FILE}"] && { \
 grep -q 'failure has been detected in another branch' \
 ${.ERROR_META_FILE} && exit 0; \
 mkdir -p ${meta_error_log:H}; \
 cp ${.ERROR_META_FILE} ${meta_error_log}; \
 echo "ERROR: log ${meta_error_log}" >&2; }; :

to gather the meta-*.log files in a convenient location for automated analysis. Note that
we suppress complaints about the build having failed elsewhere.

.MAKE.MODE

This variable is processed after all makefiles have been read, and can control the behavior
of bmake. It can contain various words which are covered in the man page, for now:

compat
puts bmake into compat mode (the -B command line option sets
.MAKE.MODE=compat). Many makefiles are written with implicit dependencies
which only work when targets are made in the order specified. These makefiles can
be run in meta compat mode.

Some makefiles rely on stderr being separated from stdout. Such makefiles need
to run in compat mode.

meta
puts bmake into meta mode. The following are only relevant in this case (any
combination will do):

verbose
When generating or updating a .meta file, print the value of
.MAKE.META.PREFIX. The default is Building
${.TARGET:H:tA}/${.TARGET:T}.

nofilemon
Do not attempt to use filemon. For a one time clean tree build, there is no
benefit in capturing the system call activity. The .meta files however are still
useful for capturing error output.

ignore-cmd
Some makefiles have commands which are simply not stable. This tells bmake
to not consider a target out-of-date due to a change of command. A change in
the number of commands will still make the target out-of-date. The same
effect can be had on a per target basis using the special source .NOMETA_CMP.

curdirOk=yes
If running a generated makefile via a sub-make in .OBJDIR, .OBJDIR and
.CURDIR can be the same, this knob allows us to still get .meta files.

For example:

.MAKE.MODE = meta verbose

.MAKE.MODE = compat

some makefiles want to ensure they run in compat mode regardless of meta mode:

.MAKE.MODE += compat

can take care of that. In some cases, a makefile does not want to run in meta mode, but
does not want to run in compat mode either:

.MAKE.MODE = normal

the actual value in that case is unimportant (so long as it contains neither meta nor
compat).

filemon
This is a kernel module which wraps system calls that are of interest to make. It is a clone
device, so each time it is opened a new instance is created. When bmake forks a child, the
child associates itself with the relevant filemon device.

Then any of the wrapped system calls performed by the child and its descendants will be
recorded.

Filemon only records successful syscalls. This limits the data collected to only that which
we are interested in.

Similar information could be obtained by ktrace(8), but ktrace captures all syscalls
including those which fail, which makes it harder to gather the relevant data.

The prototype build (later jbuild) used DTrace for tracking the system calls of interest
to the build. On most systems however, this required special (eg. root) privilege - which
is not desirable. Also DTrace's probes in exec(2) can report argv[0] but that isn't
always useful - when found via the path. So we asked John to implement a kernel module
(filemon) instead.

The original filemon is available in FreeBSD, and a version has been contributed to
NetBSD as well.

For each syscall, an entry of the form:

file:///Users/sjg/public/talks/obj/building-bsd.htm#filemon

tag pid data

is added, where data is usually a pathname and tag is one of:

C chdir
D unlink
E exec
F [v]fork
L [sym]link
M rename
R open for read
S stat
W open for write
X exit

as noted below, the C E and R entries are of particular interest to bmake.

Extracting dependencies
While bmake itself simply uses .meta files to help evaluate the out-of-date status of
targets, and to capture command output for diagnosis purposes, there is lots of useful data
collected from filemon which can be easily leveraged.

For example, we can extract a list of all the files opened for reading. We can split these
into two sets:

generated files

Any file that appears in the object tree of our sandbox, is a generated file, and by
definition needs to be up to date before the current target is made.

If that generated file is not in the current object directory, we have detected a directory
which needs to be visited before the current one.

Ensuring that the layout with the object trees mirror that within the src tree is a trivial
means of being able to map generated files back to their src directories.

src files

Any file read from the src tree is one that must exist for the current target to be built. If
that file is outside of the current directory, then it represents a directory which must be
present in the tree.

These src dependencies can be leveraged to drive minimal subset checkout logic.

Makefiles
The following sections provide some detail about some example makefiles that leverage
meta mode to improve build performance and functionality.

Makefile.depend

The build and src dependencies can be collected as relative paths (from the top of the
tree), into a generated file that can be checked into the SCM.

file:///Users/sjg/public/talks/obj/building-bsd.htm#filemon

This is the most visible change, since every leaf directory gets one or more of these.

Note that the name Makefile.depend is just an example (though not a bad one ;-) it is
just what I set as the value for .MAKE.DEPENDFILE.

To support support building for multiple target machines at the same time a better value
for .MAKE.DEPENDFILE is Makefile.depend.${MACHINE}. I use the unqualified name
in discussions when it makes no difference.

The per ${MACHINE} depend file, avoids the need for a mutex when updating, and avoids
the need for any cleverness in representing machine specific paths in canonical forms (for
example; replacing sys/i386/include with sys/${MACHINE_ARCH}/include.) The
simplicity hopefully trumps the overhead of many almost identical small files.

In addition, we can extract local dependencies needed for a parallel build in a clean tree.
That is; any file read from the current object directory is a local dependency for the target
being made. If this information is being recorded in Makefile.depend, then it is wise to
(if necessary) fake entries for profiled objects (.po) to avoid needless churn when some
builds are done with profiling enabled and some are not.

For example, given the makefile:

PROG = ${.CURDIR:T}

SRCS = getdate.c main.c

YACC ?= yacc
DELAY ?= 1

getdate.h: getdate.y
 ${YACC} -d ${.ALLSRC:M*.y}
 mv y.tab.c $*.c
 sleep ${DELAY}
 mv y.tab.h $*.h

getdate.c: getdate.h

.include <bsd.prog.mk>

there is a missing dependency (assuming main.c includes getdate.h). Without
addressing that, a bmake -j8 in a clean directory will likely fail. The sleep is just there
to help exercise the race condition.

However, if we end up with something like the following in Makefile.depend:

Autogenerated - do NOT edit!

DEP_RELDIR := ${_PARSEDIR:S,${SRCTOP}/,,}

DEP_MACHINE := ${.PARSEFILE:E}

DIRDEPS = \
 lib/libc

.include <dirdeps.mk>

.if ${DEP_RELDIR} == ${_DEP_RELDIR} && !exists(.depend)
local dependencies - needed for -jN in clean tree
main.o: getdate.h
main.po: getdate.h
.endif

The missing dependency is taken care of.

Obviously, if the programmer was smart enough to get the dependencies for getdate.c
right, he likely wouldn't have missed that for main.o but not all makefiles are this simple,
and the dependency on getdate.h may have been added later.

One build product per directory

Actually that is an exaggeration. There is no problem with building multiple things (like
the various flavors of a library that bsd.lib.mk generates), so long as the behavior is
consistent.

Since Makefile.depend* are intended to be checked into the SCM, they must be stable.
For most makefiles this is a non-issue, but for others some re-design may be needed.
Stable dependencies are a pre-requisite for declaring a conversion to meta mode complete.

To avoid capturing spurious dependencies meta.autodep.mk only considers updating
Makefile.depend* if we successfully built the default or all target. Thus doing bmake
cscope or bmake etags does not perturb the captured dependencies.

Given the above, makefiles which build multiple things, by use of sub-makes running in
the same directory for different targets, will not have all their dependencies captured
correctly.

In some cases this does not matter. For example progs.mk can be used to build lots of
apps in the same directory. In meta mode it selects just one of the PROG's to be the one for
which dependencies will be captured. If all the apps built in that directory have essentially
similar dependencies this just works.

In other cases, re-organizing to have sub-dirs per build product such that each can simply
be built via the all target eliminates any problems.

Separate MACHINE independent activity

Many makefiles - for example bin/sh/Makefile generate host tools (tools used during
their build). Moving the building of these tools into subdirs allows them to be built once,
rather than once per target machine.

The same idea can be used for the output of various code generators. Whether this is a
significant optimization depends on the cost of running the code generators or building
tools, and the number of machines to be built for.

The Junos build makes heavy use of generated code, and builds for many different
machine types, so the savings are worth it. Even so, these are optimizations that can be
introduced over time.

meta.autodep.mk

Since the extraction of build dependencies from the .meta files is controlled by the
makefiles (if done at all), it is desirable to avoid running that process unnecessarily.

The fact that bmake tracks updated .meta files via .MAKE.META.CREATED makes it
possible to optimize the updating of dependencies, with a meta.autodep.mk which is
simpler than the old autodep.mk. The following is somewhat simplified:

file:///Users/sjg/public/talks/obj/building-bsd.htm#meta-autodep-mk

.END: gendirdeps

_DEPENDFILE := ${.CURDIR}/${.MAKE.DEPENDFILE:T}
gendirdeps: ${_DEPENDFILE}

the double $$ defers initial evaluation
${_DEPENDFILE}: $${.MAKE.META.CREATED} ${.PARSEDIR}/gendirdeps.mk
 @echo Updating $@: ${.OODATE:T:[1..8]}
 @(cd ${.CURDIR} && \
 SKIP_DIRDEPS='${SKIP_DIRDEPS:O:u}' \
 ${.MAKE} __objdir=${_OBJDIR} -f gendirdeps.mk $@ \
 META_FILES='${.MAKE.META.FILES:T:O:u}')

As noted the double $$ in the dependency line, prevents .MAKE.META.CREATED being
expanded immediately, which works to our advantage. Also note: we use
.MAKE.META.CREATED only to know that an update is needed, .MAKE.META.FILES is
what we use for the update:

$ vi cat.c
$ mk
Checking /c/sjg/work/sb/src/bsd/gnu/lib/csu for i386 ...
Checking /c/sjg/work/sb/src/bsd/lib/csu/i386-elf for i386 ...
Checking /c/sjg/work/sb/src/bsd/include for i386 ...
Checking /c/sjg/work/sb/src/bsd/usr.bin/rpcgen for host ...
Checking /c/sjg/work/sb/src/bsd/include/rpc for i386 ...
Checking /c/sjg/work/sb/src/bsd/include/rpcsvc for i386 ...
Checking /c/sjg/work/sb/src/bsd/lib/libc for i386 ...
Building /c/sjg/work/sb/obj-i386/bsd/bin/cat/cat.o
Building /c/sjg/work/sb/obj-i386/bsd/bin/cat/cat
Updating /c/sjg/work/sb/src/bsd/bin/cat/Makefile.depend.i386: cat.o.meta
$ mk
Checking /c/sjg/work/sb/src/bsd/gnu/lib/csu for i386 ...
Checking /c/sjg/work/sb/src/bsd/lib/csu/i386-elf for i386 ...
Checking /c/sjg/work/sb/src/bsd/include for i386 ...
Checking /c/sjg/work/sb/src/bsd/usr.bin/rpcgen for host ...
Checking /c/sjg/work/sb/src/bsd/include/rpc for i386 ...
Checking /c/sjg/work/sb/src/bsd/include/rpcsvc for i386 ...
Checking /c/sjg/work/sb/src/bsd/lib/libc for i386 ...
$

This model also works independently of the tool-chains being used, whereas gcc -M*
requires use of -MF and -MT to do a decent job. Not to mention other languages.

If you know that the rest of the tree is up to date, you can tell dirdeps.mk to skip checking:

$ vi cat.c
$ mk -DNO_DIRDEPS
Building /c/sjg/work/sb/obj-i386/bsd/bin/cat/cat.o
Building /c/sjg/work/sb/obj-i386/bsd/bin/cat/cat
Updating /c/sjg/work/sb/src/bsd/bin/cat/Makefile.depend.i386: cat.o.meta
$ mk -DNO_DIRDEPS
$

Note that -DNO_DIRDEPS only supresses DIRDEPS outside of .CURDIR so you can:

$ mk-host -DNO_DIRDEPS -C external/bsd/atf/tests

to build and run all the ATF unit tests on the build host. But not waste time checking that
things outside of that subtree are up to date.

.depend

file:///Users/sjg/public/talks/obj/building-bsd.htm#dirdeps-mk

In meta mode, we still use .depend but only for the local dependencies - that we will end
up capturing in Makefile.depend. This happens independently of updating
Makefile.depend.

It can be dangerous to look too deep into how a target is made. When temporary files get
generated, and post processed, they can result in spurious (even circular) dependencies
being recorded. To avoid this, meta.autodep.mk has a list of dependency patterns to
ignore.

gendirdeps.mk

This is the makefile which extracts DIRDEPS and SRC_DIRDEPS from a bunch of .meta
files. The process for doing this can vary. It is almost as complicated as dirdeps.mk

For example, the Junos build leverages the notion of a sandbox which is just a tree with a
marker at its top, which is used to condition the environment. The location of that marker
defines ${SB}, which has many uses. In the discussion below, assume that:

SRCTOP = ${SB}/src
OBJTOP = ${SB}/obj/${MACHINE}
OBJROOT = ${SB}/obj/

In our example, gendirdeps.mk uses a shell script (meta2deps.sh) to look at all the
paths read, and executed during the build, converts them to absolute paths, ignores any
which are outside of ${SB}, and then those which match ${SRCTOP}/* are put into the
SRC_DIRDEPS list, and the rest into DIRDEPS. Also, if a object directory referenced is
outside ${OBJTOP} (ie. directory was built for another value of MACHINE), the dirdep entry
is left qualified with that machine value.

In general one can use :S,${OBJTOP},${SRCTOP}, to map an object directory to the
corresponding src directory, and :S,${SRCTOP}/,, to convert that to a tree relative path -
which is what we want in DIRDEPS etc.

As mentioned earlier, using headers from their src location may not be ideal. If generated
files are collected together in a common directory however, (eg.
${SB}/obj/common/include/) the mapping described above will fail. By putting beside
each such file a file.dirdep which contains the correct relative path to the src
directory, this problem is solved.

meta.stage.mk

This makefile links or copies files into their staging locations, and ensures that a .dirdep
file is associated with each one, so that meta2deps.sh can do its job.

You can think of it as doing make install as you go.

It handles multiple STAGE_SETS each with their own target directory, and even
STAGE_AS_SETS where the names of the staged files do not match the src. These are
handled in much the same was as symlinks.

dirdeps.mk

All of the logic for dealing with DIRDEPS is encapsulated in dirdeps.mk which is
included by Makefile.depend.${MACHINE}, and is only relevant for the initial instance
of bmake (${.MAKE.LEVEL} == 0).

file:///Users/sjg/public/talks/obj/building-bsd.htm#dirdeps-mk

Conceptually, the process is quite simple (even if the implementation is not):

When the initial bmake reads ${.CURDIR}/Makefile.depend.${MACHINE}, it gets an
initial set of DIRDEPS.

dirdeps.mk transforms DIRDEPS into a set of absolute paths with a .${MACHINE} suffix,
to deal with building for multiple machine types. The pseudo machine .host represents
the build host. These are hooked into a dependency for the target dirdeps.

dirdeps.mk also turns DIRDEPS into a list of */Makefile.depend* files which will be
read, to get more DIRDEPS.

Since each Makefile.depend* includes dirdeps.mk the process is recursive, at each
point adding something like:

${SRCTOP}/${DEP_RELDIR}.${MACHINE}: ${DIRDEPS:@d@${SRCTOP}/$d.${MACHINE}@}

to the graph.

It is actually more complicated than that, to deal with cases where
${DEP_RELDIR}.${MACHINE} depends on dirs built for other machines (eg. pseudo
machines like host for host tools). But the above shows how a tree-wide set of
dependencies are built.

You can gather a lot of information from dirdeps.mk by setting DEBUG_DIRDEPS to a list
of directories of interest (* for all). If you recall the teaser example from earlier:

$ mk -n -C bin/sh DEBUG_DIRDEPS='*' |
 sed -n "/275:/ { s,.*275:,,;s,${SB}/src/,,g;p; }"

produces the output below (reformatted for readability):

bin/sh: \
 bin/sh.i386 \
 include.i386 \
 lib/libc.i386 \
 lib/libedit.i386 \
 lib/ncurses/ncurses.i386 \
 stage.i386 \
 sys/i386/include.i386 \
 sys/sys.i386 \
 sys/x86/include.i386

lib/libc.i386: \
 include.i386 \
 lib/msun.i386 \
 stage.i386 \
 sys/i386/include.i386 \
 sys/sys.i386 \
 sys/x86/include.i386

lib/msun.i386: \
 include.i386 \
 stage.i386 \
 sys/i386/include.i386 \
 sys/sys.i386

lib/libedit.i386: \
 include.i386 \
 lib/ncurses/ncursesw.i386 \
 stage.i386 \

 sys/i386/include.i386 \
 sys/sys.i386 \
 sys/x86/include.i386

lib/ncurses/ncursesw.i386: \
 include.i386 \
 stage.i386 \
 sys/i386/include.i386 \
 sys/sys.i386 \
 sys/x86/include.i386

All the expanded DIRDEPS are associated with a build macro which will cause them to be
visited with MACHINE set to the correct value:

we suppress SUBDIR when visiting the leaves
_DIRDEP_USE: .USE .MAKE
 @for m in ${.MAKE.MAKEFILE_PREFERENCE}; do \
 test -s ${.TARGET:R}/$$m || continue; \
 echo "${TRACER}Checking ${.TARGET:R} for ${.TARGET:E} ..."; \
 MACHINE=${.TARGET:E} MACHINE_ARCH= NO_SUBDIR=1 \
 ${.MAKE} -C ${.TARGET:R} || exit 1; \
 break; \
 done

Note: clearing MACHINE_ARCH as above assumes that sys.mk will set it to something
appropriate for ${MACHINE} if necessary.

The distributed version of dirdeps.mk as extra checks to handle ${.MAKE.DEPENDFILE}
not being qualified with ${MACHINE}. Regardless of whether ${.MAKE.DEPENDFILE} is
qualified with ${MACHINE} or not, dirdeps.mk always qualifies the dependencies it
constructs.

Also, like many of the makefiles in the mk-files distribution, dirdeps.mk will include
local.dirdeps.mk if it exists, so that local customizations can be accommodated
without the need to touch the original makefile.

For the build geeks

Here for your reading pleasure, is the full (with the exception of the BSD license) text of
dirdeps.mk, there are a couple of extra line breaks. Read carefully - there will be a test!

Copyright (c) 2010, Juniper Networks, Inc.

Two clause BSD license elided.

Much of the complexity here is for supporting cross-building.
If a tree does not support that, simply using plain Makefile.depend
should provide sufficient clue.
Otherwise the recommendation is to use Makefile.depend.${MACHINE}
as expected below.

Note: this file gets multiply included.
This is what we do with DIRDEPS

DIRDEPS:
This is a list of directories - relative to SRCTOP, it is only
of interest to .MAKE.LEVEL 0.
In some cases the entry may be qualified with a .<machine>
suffix, for example to force building something for the pseudo
machines "host" or "common" regardless of current ${MACHINE}.
All unqualified entries end up being qualified with .${MACHINE}

and _DIRDEPS_USE below, uses the suffix to set MACHINE
correctly when visiting each entry.
#
Each entry is also converted into a set of paths to look for
Makefile.depend.<machine> to learn the dependencies of each.
Each Makefile.depend.<machine> sets DEP_RELDIR to be the
the RELDIR (path relative to SRCTOP) for its directory, and
DEP_MACHINE to its suffix (<machine>), further since
each Makefile.depend.<machine> includes dirdeps.mk, this
processing is recursive and results in .MAKE.LEVEL 0 learning the
dependencies of the tree wrt the initial directory (_DEP_RELDIR).
#
BUILD_AT_LEVEL0
Indicates whether .MAKE.LEVEL 0 builds anything:
if "no" sub-makes are used to build everything,
if "yes" sub-makes are only used to build for other machines.

.if ${.MAKE.LEVEL} == 0
only the first instance is interested in all this

pickup customizations
as below you can use !target(_DIRDEP_USE) to protect things
which should only be done once.
.-include "local.dirdeps.mk"

the first time we are included the _DIRDEP_USE target will not be defined
we can use this as a clue to do initialization and other one time things.
.if !target(_DIRDEP_USE)
make sure this target exists
dirdeps:

We normally expect to be included by Makefile.depend.*
which sets the DEP_* macros below.
DEP_RELDIR ?= ${RELDIR}

this get's set by Makefile.depend.*
but that may not have been included yet.
DEP_MACHINE ?= ${TARGET_MACHINE:U${.MAKE.DEPENDFILE:E}}

if we are using just Makefile.depend DEP_MACHINE will likely be wrong
.if ${DEP_MACHINE} == "depend"
DEP_MACHINE = ${MACHINE}
nothing else makes sense
ONLY_MACHINE_LIST ?= ${MACHINE}
.endif

this can cause lots of output!
set to a set of glob expressions that might match RELDIR
DEBUG_DIRDEPS ?= no

remember the initial value of DEP_RELDIR - we test for it below.
_DEP_RELDIR := ${DEP_RELDIR}

things we skip for host tools
SKIP_HOSTDIR ?=

NSkipHostDir = ${SKIP_HOSTDIR:N*.host:S,$,.host,:N.host:${M_ListToSkip}}
NSkipHostDep = ${SKIP_HOSTDIR:R:@d@*/$d*.host@:${M_ListToSkip}}

things we always skip
SKIP_DIRDEPS allows for adding entries on command line.
SKIP_DIR += .host *.WAIT ${SKIP_DIRDEPS}

.ifdef HOSTPROG
SKIP_DIR += ${SKIP_HOSTDIR}
.endif

NSkipDir = ${SKIP_DIR:${M_ListToSkip}}

.if defined(NO_DIRDEPS) || defined(NODIRDEPS)
confine ourselves to the original dir
DIRDEPS_FILTER += M${_DEP_RELDIR}*
.endif

we supress SUBDIR when visiting the leaves
_DIRDEP_USE: .USE .MAKE
 @for m in ${.MAKE.MAKEFILE_PREFERENCE}; do \
 test -s ${.TARGET:R}/$$m || continue; \
 echo "${TRACER}Checking ${.TARGET:R} for ${.TARGET:E} ..."; \
 MACHINE=${.TARGET:E} MACHINE_ARCH= NO_SUBDIR=1 \
 ${.MAKE} -C ${.TARGET:R} || exit 1; \
 break; \
 done

.ifdef ALL_MACHINES
this is how you limit it to only the machines we have been built for
previously.
.if empty(ONLY_MACHINE_LIST)
.if !empty(ALL_MACHINE_LIST)
ALL_MACHINE_LIST is the list of all legal machines - ignore anything else
_machine_list != cd ${_CURDIR} && 'ls' -1 \
${ALL_MACHINE_LIST:O:u:@m@${.MAKE.DEPENDFILE:T:R}.$m@} 2> /dev/null; echo
.else
_machine_list != 'ls' -1 \
${_CURDIR}/${.MAKE.DEPENDFILE:T:R}.* 2> /dev/null; echo
.endif
_only_machines := ${_machine_list:${NIgnoreFiles:UN*.bak}:E:O:u}
.else
_only_machines := ${ONLY_MACHINE_LIST}
.endif

.if empty(_only_machines)
we must be boot-strapping
_only_machines := ${TARGET_MACHINE:U${ALL_MACHINE_LIST:U${DEP_MACHINE}}}
.endif

.else # ! ALL_MACHINES
if ONLY_MACHINE_LIST is set, we are limited to that
if TARGET_MACHINE is set - it is really the same as ONLY_MACHINE_LIST
otherwise DEP_MACHINE is it - so DEP_MACHINE will match.
_only_machines := \
${ONLY_MACHINE_LIST:U${TARGET_MACHINE:U${DEP_MACHINE}}:M${DEP_MACHINE}}
.endif

.if !empty(NOT_MACHINE_LIST)
_only_machines := ${_only_machines:${NOT_MACHINE_LIST:${M_ListToSkip}}}
.endif

make sure we have a starting place?
DIRDEPS ?= ${RELDIR}
.endif # target

the rest is done repeatedly for every Makefile.depend we read.
if we are anything but the original dir we care only about the
machine type we were included for..

if we are using just Makefile.depend DEP_MACHINE will likely be wrong
.if ${DEP_MACHINE} == "depend"
DEP_MACHINE = ${MACHINE}
.endif

.if ${DEP_RELDIR} == "."

_this_dir := ${SRCTOP}
.else
_this_dir := ${SRCTOP}/${DEP_RELDIR}
.endif

on rare occasions, there can be a need for extra help
.if ${.MAKE.DEPENDFILE:E} == "depend"
_dep_hack := ${_this_dir}/${.MAKE.DEPENDFILE:T}.inc
.else
_dep_hack := ${_this_dir}/${.MAKE.DEPENDFILE:T:R}.inc
.endif
.if ${.MAKE.MAKEFILES:M${_dep_hack}} == ""
.-include "${_dep_hack}"
.endif

.if ${DEP_RELDIR} != ${_DEP_RELDIR} || ${DEP_MACHINE} != ${MACHINE}
this should be all
_machines = ${DEP_MACHINE}
.else
this is the machine list we actually use below
_machines := ${_only_machines}

.if defined(HOSTPROG) || ${DEP_MACHINE} == "host"
we need to build this guy's dependencies for host as well.
_machines += host
.endif

_machines := ${_machines:O:u}
.endif

_build_dirs =
_depdir_files =

.if ${DEP_RELDIR} == ${_DEP_RELDIR}
pickup other machines for this dir if necessary
.if ${BUILD_AT_LEVEL0:Uyes} == "no"
_build_dirs += ${_machines:@m@${_CURDIR}.$m@}
.else
_build_dirs += ${_machines:N${DEP_MACHINE}:@m@${_CURDIR}.$m@}
.if ${DEP_MACHINE} == ${MACHINE}
pickup local dependencies now
.-include <.depend>
.endif
.endif
.endif

.if ${DEBUG_DIRDEPS:@x@${DEP_RELDIR:M$x}${${DEP_RELDIR}.\
${DEP_MACHINE}:L:M$x}@} != ""
.info ${DEP_RELDIR}.${DEP_MACHINE}: DIRDEPS='${DIRDEPS}'
.info ${DEP_RELDIR}.${DEP_MACHINE}: _machines='${_machines}'
.endif

.if !empty(DIRDEPS)

this is what we start with
__depdirs := ${DIRDEPS:${NSkipDir}:${DIRDEPS_FILTER:ts:}:O:u:@d@${SRCTOP}/$d@}

some entries may be qualified with .<machine>
the :M*/*/*.* just tries to limit the dirs we check to likely ones.
the ${d:E:M*/*} ensures we don't consider junos/usr.sbin/mgd
__qual_depdirs := ${__depdirs:M*/*/*.*:@d@${exists($d):?:\
${"${d:E:M*/*}":?:${exists(${d:R}):?$d:}}}@}
__unqual_depdirs := ${__depdirs:${__qual_depdirs:Uno:${M_ListToSkip}}}

.if ${DEP_RELDIR} == ${_DEP_RELDIR}
if it was called out - we likely need it.

__hostdpadd := ${DPADD:U.:M${HOST_OBJTOP}/*:S,${HOST_OBJTOP}/,,:H:\
${NSkipDir}:${DIRDEPS_FILTER:ts:}:S,$,.host,:N.*:@d@${SRCTOP}/$d@}
__qual_depdirs += ${__hostdpadd}
.endif

.if ${DEBUG_DIRDEPS:@x@${DEP_RELDIR:M$x}${${DEP_RELDIR}.\
${DEP_MACHINE}:L:M$x}@} != ""
.info depdirs=${__depdirs}
.info qualified=${__qual_depdirs}
.info unqualified=${__unqual_depdirs}
.endif

_build_dirs is what we will feed to _DIRDEP_USE
_build_dirs += \
 ${__qual_depdirs:M*.host:${NSkipHostDir}:N.host} \
 ${__qual_depdirs:N*.host} \
 ${_machines:@m@${__unqual_depdirs:@d@$d.$m@}@}

_build_dirs := ${_build_dirs:O:u}

this is where we will pick up more dependencies from
.if ${.MAKE.DEPENDFILE:E} == "depend"
_depdir_files += \
 ${_build_dirs:@d@${d:R}/${.MAKE.DEPENDFILE:T}@}
.else
_depdir_files += \
 ${_build_dirs:@d@${d:R}/${.MAKE.DEPENDFILE:T:R}.${d:E}@}
.endif

_depdir_files := ${_depdir_files:O:u}

.endif # empty DIRDEPS

.if ${.MAKEFLAGS:M-V} == ""

.if !empty(_build_dirs)
this makes it all happen
dirdeps: ${_build_dirs}
${_build_dirs}: _DIRDEP_USE

.if ${DEBUG_DIRDEPS:@x@${DEP_RELDIR:M$x}${${DEP_RELDIR}.\
${DEP_MACHINE}:L:M$x}@} != ""
.info ${DEP_RELDIR}.${DEP_MACHINE}: ${_build_dirs}
.endif

.for m in ${_machines}
it would be nice to do :N${.TARGET}
.if !empty(__qual_depdirs)
.for q in ${__qual_depdirs:E:O:u:N$m}
.if ${DEBUG_DIRDEPS:@x@${DEP_RELDIR:M$x}${${DEP_RELDIR}.$m:L:M$x}\
${${DEP_RELDIR}.$q:L:M$x}@} != ""
.info ${DEP_RELDIR}.$m: ${_build_dirs:M*.$q}
.endif
${_this_dir}.$m: ${_build_dirs:M*.$q}
.endfor
.endif
.if ${DEBUG_DIRDEPS:@x@${DEP_RELDIR:M$x}${${DEP_RELDIR}.$m:L:M$x}@} != ""
.info ${DEP_RELDIR}.$m: ${_build_dirs:M*.$m:N${_this_dir}.$m}
.endif
${_this_dir}.$m: ${_build_dirs:M*.$m:N${_this_dir}.$m}
.endfor

.endif

.for d in ${_depdir_files}

.if ${.MAKE.MAKEFILES:M${d}} == ""

.if ${DEBUG_DIRDEPS:@x@${DEP_RELDIR:M$x}${${DEP_RELDIR}.depend:L:M$x}@} != ""

.info Looking for $d

.endif

.-include <$d>

.if ${.MAKE.DEPENDFILE:E} != "depend" && ${.MAKE.MAKEFILES:M${d}} == ""
see if the unqualified file exists
it might be manually maintained and shared by all machine types
.-include <${d:R}>
.endif
.endif
.endfor
.endif # -V

.elif ${.MAKE.LEVEL} > 42

.error You should have stopped recursing by now.

.else
_DEP_RELDIR := ${DEP_RELDIR}
pickup local dependencies
.-include <.depend>
.endif

meta.subdir.mk

While our goal is to build by visiting the tree's leaf nodes directly, we still need to be able
to launch a build in say src/lib/ to build all the libraries there - perhaps to check we
didn't break any.

If there is no Makefile.depend in the current directory, meta.subdir.mk does
something like:

_subdirs != find ${SUBDIR} -name 'Makefile.depend*'

and assigns the cleaned up result to DIRDEPS. Thus the initial DIRDEPS includes all the
leaf directories below the current one. Of course it is actually more complex than that, but
that's the basic idea. Once DIRDEPS is set, including dirdeps.mk does the rest.

meta.sys.mk

This makefile exists mainly to facilitate having meta mode as an option for example
during a transition period. For example, in sys.mk one can have:

.if ${USE_META:Uno} == "yes"

.-include <meta.sys.mk>

.endif
make sure we have a harmless value
.MAKE.MODE ?= normal

and the distributed meta.sys.mk contains things like:

include this if you want to enable meta mode
for maximum benefit, requires DTrace or the filemon(9) driver.

.if ${MAKE_VERSION:U0} > 20100901

.if !target(.ERROR)

META_MODE += meta verbose
.MAKE.MODE ?= ${META_MODE}

make defaults .MAKE.DEPENDFILE to .depend
that won't work for us.
.if ${.MAKE.DEPENDFILE} == ".depend"
.undef .MAKE.DEPENDFILE

.endif

if you don't cross build for multiple MACHINEs concurrently, then
.MAKE.DEPENDFILE = Makefile.depend
probably makes sense - you can set that in local.sys.mk
.MAKE.DEPENDFILE ?= Makefile.depend.${MACHINE}

we use the pseudo machine "host" for the build host.
this should be taken care of before we get here
.if ${OBJTOP:Ua} == ${HOST_OBJTOP:Ub}
MACHINE = host
.endif

MAKE_PRINT_VAR_ON_ERROR += \
 .ERROR_TARGET \
 .ERROR_META_FILE \
 .MAKE.LEVEL \
 MAKEFILE \
 .MAKE.MODE

.if !defined(SB) && defined(SRCTOP)
SB = ${SRCTOP:H}
.endif
ERROR_LOGDIR ?= ${SB}/error
meta_error_log = ${ERROR_LOGDIR}/meta-${.MAKE.PID}.log

we are not interested in make telling us a failure happened elsewhere
.ERROR:
 -@["${.ERROR_META_FILE}"] && { \
 grep -q 'failure has been detected in another branch' \
 ${.ERROR_META_FILE} && exit 0; \
 mkdir -p ${meta_error_log:H}; \
 cp ${.ERROR_META_FILE} ${meta_error_log}; \
 echo "ERROR: log ${meta_error_log}" >&2; }; :

.endif

Are we, after all, in meta mode?
.if ${.MAKE.MODE:Mmeta*} != ""
MKDEP = meta.autodep

.if ${.MAKE.LEVEL} == 0
make sure dirdeps target exists and do it first
all: dirdeps .WAIT
dirdeps:

.if ${.MAKE.DEPENDFILE:E} != "depend"
it works best if we do everything via sub-makes
BUILD_AT_LEVEL0 ?= no
.endif
BUILD_AT_LEVEL0 ?= yes
.if ${.MAKE.MODE:M*nofilemon*} != "" || ${.MAKE.MODE:M*read*} != ""
UPDATE_DEPENDFILE = NO
.export UPDATE_DEPENDFILE
.endif
.endif

if we think we are updating dependencies,
then filemon had better be present
.if ${UPDATE_DEPENDFILE:Uyes:tl} != "no" && !exists(/dev/filemon)
.error ${.newline}ERROR: The filemon module (/dev/filemon) is not loaded.
.endif

.endif

.endif

That last check works best if /dev/filemon automatically disappears when the module is
not loaded.

Also, as with dirdeps.mk there are some macros you'll need from my sys.mk and friends
if integrating this into something else.

BUILD_AT_LEVEL0

As noted above, if you are always building for multiple machine types, it can be best to
reserve level 0 for just computing the tree wide dependency graph, and do all the actual
building at level 1 or greater.

Building kernels

The stock BSD kernel build does not lend itself well to capturing dependencies since there
isn't normally a src directory as such.

We've worked around this, by providing src directories for the kernels. From
jnx.kernel.mk:

for each kernel we have:
${KERNEL_NAME}/config/
${KERNEL_NAME}/kernel/
and possibly?
${KERNEL_NAME}/modules/*
#
config/ is where config(8) is run
both kernel/ and modules that need to link with it
can depend on config/
If there are kernel specific modules (which do not link into it)
they could be built under modules/ (one directory each of course)
#
For example:
bsd/kernels/JUNIPER/config
bsd/kernels/JUNIPER/kernel
#
Because config(8) produces a Makefile which we want to use,
the makefiles in config/ and kernel/ above should be called 'makefile'.

All that makefile does is .include <jnx.kernel.mk> The Makefile.depend.i386
in bsd/kernels/JUNIPER/config says:

Autogenerated - do NOT edit!

DEP_RELDIR := ${_PARSEDIR:S,${SRCTOP}/,,}

DEP_MACHINE := ${.PARSEFILE:E}

DIRDEPS = \
 bsd/usr.sbin/config.host \

SRC_DIRDEPS = \
 bsd/sys/conf \
 bsd/sys/i386/conf \
 bsd/sys/x86/conf \

.include <dirdeps.mk>

.if ${DEP_RELDIR} == ${_DEP_RELDIR} && !exists(.depend)

local dependencies - needed for -jN in clean tree
.endif

and in bsd/kernels/JUNIPER/kernel:

Autogenerated - do NOT edit!

DEP_RELDIR := ${_PARSEDIR:S,${SRCTOP}/,,}

DEP_MACHINE := ${.PARSEFILE:E}

DIRDEPS = \
 bsd/include \
 bsd/kernels/JUNIPER/config \

SRC_DIRDEPS = \
 bsd/include \
 ...

The reason for multiple directories is that any loadable modules (as well as the kernel)
depend on config(8) having run. Isolating that step allows the kernel and any modules to
then be built in parallel.

You can also see above that we build bsd/usr.sbin/config for the pseudo machine
host before we can configure the kernel.

Top-level makefiles?

All very interesting, but what about those hideously complex top-level makefiles, you ask?
They become the simplest of all.

Let's say we want to build a package pkg-tools that contained:

/usr/sbin/pkg_add
/usr/sbin/pkg_delete
/usr/sbin/pkg_info
/sbin/sha1
/sbin/verify-sig

We would need a makefile say pkgs/pkg-tools/Makefile something like:

pickup the package building magic
.include "../Makefile.inc"

and a Makefile.depend something like:

This file is NOT autogenerated - take care!

DEP_RELDIR := ${_PARSEDIR:S,${SRCTOP}/,,}

we get shared by everyone
DEP_MACHINE := ${MACHINE}

DIRDEPS = \
 usr.sbin/pkg_add \
 usr.sbin/pkg_delete \
 usr.sbin/pkg_info \
 sbin/md5 \
 sbin/verify-sig

.include <dirdeps.mk>

and perhaps we want to include that package in a bundle package base-os it might have
an almost identical makefile, except that the Makefile.depend might contain:

This file is NOT autogenerated - take care!

DEP_RELDIR := ${_PARSEDIR:S,${SRCTOP}/,,}

DEP_MACHINE := ${MACHINE}

DIRDEPS = \
 pkgs/pkg-tools \
 pkgs/sys-tools \
 ...

.include <dirdeps.mk>

and finally, perhaps we have a bundle package which needs base-os for a couple of
different machine types - because the target platform needs them:

This file is NOT autogenerated - take care!

DEP_RELDIR := ${_PARSEDIR:S,${SRCTOP}/,,}

DEP_MACHINE := ${.PARSEFILE:E}

DIRDEPS = \
 pkgs/base-os.i386 \
 pkgs/base-os.mips \
 ...

.include <dirdeps.mk>

and so on. Each such makefile, is quite straight forward and easy to understand, the build
structure can be built layer upon layer, and dirdeps.mk makes it all just work.

In fact the top-level makefile itself need be no more than:

DIRDEPS = ${.TARGETS:Nall:@d@pkgs/$d@}

.include <dirdeps.mk>

.for t in ${.TARGETS:Nall}
$t: dirdeps
.endfor

Building FreeBSD current
The example I showed at the start was building some of FreeBSD current in meta mode. I
was doing this as an exercise to check that dirdeps.mk et al, were viable for use outside
of Junos and also to experiment with making it easier for our engineers to build FreeBSD.

It is perhaps worth noting that the Junos tree was able to build with meta mode for many
months prior to any of the Makefile.depend* being committed. This makes it possible
to play with the idea with minimal impact.

Setup
I was looking to do this with minimal changes to FreeBSD, so the setup is a bit kludgy. In

file:///Users/sjg/public/talks/obj/building-bsd.htm#dirdeps-mk

addition to the normal share/mk/*.mk we have my mk-files distribution unpacked in mk/
and some local.*.mk to provide some glue.

sys.mk
This is the generic sys.mk from mk-files, it pulls in (if they exist):

$ grep '^.-*include' mk/sys.mk
.-include <sys.env.mk>
.include <host-target.mk>
.include <${SYS_OS_MK}>
.-include <sys/$x.mk>
.-include <$x.sys.mk>
.-include <local.sys.mk>
.-include <meta.sys.mk>

sys.env.mk
does one-time things to the environment

host-target.mk
defines HOST_TARGET and other macros needed to find a platform specific sys.mk

sys/*.mk
platform specific sys makefile. For FreeBSD I added sys/FreeBSD.mk which
contains:

.include "../../share/mk/sys.mk"

to ensure we pull in the real sys.mk, since it defines lots of things that bsd.*.mk
want.

If no platform specific sys makefile is found, Generic.mk is used.

The sys makefile used is exported as SYS_OS_MK so that sub-makes don't have to
repeat the search.

local.sys.mk
A convenient place to add local customizations:

handle freebsd'isms
BINOWN = ${USER}
BINGRP = software
OBJROOT ?= ${SB_OBJROOT}

do the right thing for mk-host and mk-hostprog
.ifdef HOSTPROG || (defined(OBJDIR) && ${OBJDIR:M*${HOST_TARGET}} != "")
MACHINE = host
MACHINE_ARCH := ${_HOST_ARCH}
OBJTOP = ${HOST_OBJTOP}
.endif

this is handy
MACHINE_OBJ.host = ${HOST_TARGET}
MACHINE_OBJ.${MACHINE} ?= ${MACHINE}
MACHINE_OBJDIR = ${MACHINE_OBJ.${MACHINE}}

we use this lot during the build
STAGE_ROOT=${SB_OBJROOT}stage/${MACHINE_OBJDIR}
what we export to others
SHARED_STAGE_ROOT= ${SB}/shared/stage/${MACHINE_OBJDIR}

.if ${MACHINE} != "host"
CFLAGS += -nostdinc
CFLAGS_LAST += -I${STAGE_ROOT}/usr/include
hack for now
CFLAGS_LAST += -I/usr/include

.endif

MAKE=${.MAKE}
ECHO=echo
freebsd needs this
DEPENDFILE ?= .depend

MKOBJDIRS ?= auto
.if ${MKOBJDIRS} == "auto"
.include <auto.obj.mk>
.endif
.NOMETA: clean destroy obj
.if make(destroy*)
NO_SILENT=1
.endif

MAKE_PRINT_VAR_ON_ERROR ?= \
 HOSTNAME SB_LOCATION _CURDIR .CURDIR \
 _OBJTOP OBJTOP _OBJDIR .OBJDIR \
 .MAKE MAKE_VERSION \
 MACHINE_ARCH MACHINE \
 .TARGETS \
 ${MAKE_PRINT_VAR_ON_ERROR_XTRAS}

The CFLAGS_LAST += -I/usr/include hack, just allows getting things building
for demo/test purposes without having to create/fix all the makefiles that would need
to stage headers to ${STAGE_ROOT}/usr/include.

meta.sys.mk
Setup meta mode - see above.

We also have mk/bsd.obj.mk -> obj.mk as a means of pulling in:

auto.obj.mk
ensure objdirs are created automagically.

and in addition we have:

local.dirdeps.mk
Included from dirdeps.mk contains:

.if !empty(DIRDEPS)
DIRDEPS += stage
.endif

To ensure stage/ gets built first (since everything depends on it) - see below.
local.libnames.mk

Included from bsd.libnames.mk contains:

.ifdef PROG
LDADD+= -L${STAGE_ROOT}${LIBDIR}
.endif

And since this is a sandbox we have:

$ cat $SB/.sandbox-env
. ${SB}/../.sandboxrc
$ cat ${SB}/../.sandboxrc
export SB_SRC=$SB/src
export BMAKE=/homes/sjg/freebsd7-i386/bin/bmake-20110327
export MAKESYSPATH=$SB/src/mk:$SB/src/share/mk
export SB_OBJROOT=$SB/obj/
export OBJTOP='${SB_OBJROOT}${MACHINE}'

export SRCTOP=${SB}/src
export MAKEOBJDIR='${.CURDIR:S,${SRCTOP},${OBJTOP},}'
SB_PATH=$PATH
export MKOBJDIRS=auto
export USE_META=yes
export HOST_OBJTOP=${SB_OBJROOT}${HOST_TARGET}
export OBJTOP='${SB_OBJROOT}${MACHINE}'
$

from which you can see that $SB/src/mk will be searched before $SB/src/share/mk so
that our sys.mk and bsd.obj.mk will be used by preference.

bmake vs FreeBSD make
We have been building FreeBSD with bmake for a long time, though we have not
attempted to keep bsd.*.mk in sync. The majority of makefiles though just work.

There are a couple of modifiers that FreeBSD make has (from OpenBSD I think), which
conflict with the ODE modifiers in bmake:

Modifier FreeBSD NetBSD

:U to upper value if undefined
:L to lower treat variable name as value
 (ie. Literal)

:tu to upper
:tl to lower

It turns out though that the only usage of either :U or :L we could find in FreeBSD current
was in tools/build/make_check/Makefile and the actual modifier used made no
difference to the test case.

There were a couple of tests in that makefile though for which we decided the bmake
behavior was incorrect - so I fixed it.

There are a couple of remaining differences which are not important. With the exception
of accepting strings of : in file names, which I'm told doesn't matter in FreeBSD
anymore?

Bmake requires you to be more explicit about some things. For example, something like:

.NOPATH: ${CLEANFILES}

tells it not to attempt to find generated files via .PATH.

Similarly, NetBSD's bsd.own.mk uses something like:

PHONY_NOTMAIN = all clean cleandir depend dependall distclean includes \
 install lint obj regress tags beforedepend afterdepend \
 beforeinstall afterinstall realinstall realdepend realall \
 html subdir-all subdir-install subdir-depend
.PHONY: ${PHONY_NOTMAIN}
.NOTMAIN: ${PHONY_NOTMAIN}

to ensure there is no confusion about what make depend means when an app just happens
to have depend.c in its SRCS.

FreeBSD's make, does not seem to need that, it behaves more like Solaris's make, than

pmake, gmake or bmake. To illustrate:

$ cat makefile
foo: hello

hello:
 echo $@

On NetBSD:

$ make -n foo
echo hello
cc -O2 -o foo foo.c
$ gmake -n foo
echo hello
cc foo.c hello -o foo
$

On FreeBSD:

$ make -n foo
echo hello
$ pmake -n foo
--- hello ---
echo hello
--- foo ---
cc -O -pipe foo.c -o foo

if we add:

.PHONY: foo

to the makefile, then on NetBSD:

$ make -n foo
echo hello
$

The .PHONY tells make that the target foo does not actually make a file called foo.

Staging headers and libs
We might as well aim to stage (install) at least headers and libs as we go.

preparing the stage

In stage/Makefile we initialize STAGE_ROOT which is set to:

$ mk -V STAGE_ROOT
${SB_OBJROOT}stage/${MACHINE_OBJDIR}
$

by running mtree:

.if !empty(STAGE_ROOT)
all: stage_include

MTREE?= mtree
MTREES= ${.CURDIR:H}/etc/mtree

stage0:

.if !exists(${STAGE_ROOT}/usr/include)
 mkdir -p ${STAGE_ROOT}/usr/include
.endif
 touch $@

stage_root: stage0
 ${MTREE} -deUw -f ${MTREES}/BSD.root.dist -p ${STAGE_ROOT} > /dev/null
 touch $@

stage_include: stage_root
 ${MTREE} -deUw -f ${MTREES}/BSD.include.dist -p \
 ${STAGE_ROOT}/usr/include > /dev/null
 touch $@

.endif

headers

The makefile in src/include is special. We can opt to use it as is and make it install
into the stage tree, we tweak it to leverage meta.stage.mk or we can massively simplify
it to install only the headers that it owns.

In the later case, we would need Makefiles like the following:

INCSDIR= /usr/include/sys
INCS= \
 _bus_dma.h \
 _iovec.h \
 _lock.h \
 _lockmgr.h \
 _mutex.h \
 ...
 watchdog.h \

.include <bsd.init.mk>

.include <bsd.incs.mk>

.include <bsd.sys.mk>

in sys/sys, sys/*/include and pretty much anywhere else that has headers which
belong in /usr/include

I've experimented with the last two approaches, and both have their downsides (if trying to
minimize changes to FreeBSD).

The following patch to bsd.incs.mk does the work:

Index: share/mk/bsd.incs.mk
===
--- share/mk/bsd.incs.mk (revision 219256)
+++ share/mk/bsd.incs.mk (working copy)
@@ -24,6 +24,8 @@
 ${group}GRP?= ${BINGRP}
 ${group}MODE?= ${NOBINMODE}
 ${group}DIR?= ${INCLUDEDIR}
+STAGE_SETS += ${group}
+STAGE_DIR.${group} = ${STAGE_ROOT}${${group}DIR}

 _${group}INCS=
 .for header in ${${group}}
@@ -39,6 +41,10 @@
 .else
 ${group}NAME_${header:T}?= ${header:T}
 .endif

+STAGE_AS_SETS += ${group}
+STAGE_AS_${header:T} = ${${group}NAME_${header:T}}
+stage_as.${group}: ${header}
+
 installincludes: _${group}INS_${header:T}
 ${group}INS${header:T}: ${header}
 ${INSTALL} -C -o ${${group}OWN_${.ALLSRC:T}} \
@@ -50,6 +56,8 @@
 .endif
 .endfor
 .if !empty(_${group}INCS)
+stage_files.${group}: ${_${group}INCS}
+
 installincludes: _${group}INS
 ${group}INS: ${${group}INCS}
 .if defined(${group}NAME)
@@ -81,4 +89,14 @@
 realinstall: installincludes
 .ORDER: beforeinstall installincludes

+.if !empty(STAGE_ROOT)
+.if !empty(STAGE_SETS)
+buildincludes: stage_files
+.if !empty(STAGE_AS_SETS)
+buildincludes: stage_as
+.endif
+.endif
+.endif
+
 .endif # !defined(NO_INCS) && ${MK_TOOLCHAIN} != "no"

libraries

For libraries we have:

Index: share/mk/bsd.lib.mk
===
--- share/mk/bsd.lib.mk (revision 219256)
+++ share/mk/bsd.lib.mk (working copy)
@@ -263,6 +263,21 @@
 .endif
 .endif

+# some libs have lots of objects, and scanning all .o, .po and .So meta files
+# is a waste of time, this tells meta.autodep.mk to just pick one
+# (typically .So)
+# yes, 42 is a random number.
+.if ${SRCS:Uno:[\#]} > 42
+OPTIMIZE_OBJECT_META_FILES ?= yes
+.endif
+
+.if !empty(STAGE_ROOT)
+STAGE_LIBDIR ?= ${STAGE_ROOT}${LIBDIR}
+
+all: stage_libs
+stage_libs: ${_LIBS}
+.endif
+
 .if !target(install)

 .if defined(PRECIOUSLIB)

and meta.stage.mk (included from bsd.sys.mk) does the rest.

auto dependencies
Hooking meta.autodep.mk is simple too:

Index: share/mk/bsd.dep.mk
===
--- share/mk/bsd.dep.mk (revision 219256)
+++ share/mk/bsd.dep.mk (working copy)
@@ -119,6 +119,10 @@
 .endfor
 .endif

+.if ${MKDEP:Uno:M*auto*} != ""
+.include <${MKDEP}.mk>
+.else
+
 .if !target(depend)
 .if defined(SRCS)
 depend: beforedepend ${DEPENDFILE} afterdepend
@@ -172,6 +176,8 @@
 .endif
 .endif

+.endif
+
 .if !target(cleandepend)
 cleandepend:
 .if defined(SRCS)

other bsd.*.mk changes
We also tweak some others:

Index: share/mk/bsd.subdir.mk
===
--- share/mk/bsd.subdir.mk (revision 219256)
+++ share/mk/bsd.subdir.mk (working copy)
@@ -31,6 +31,12 @@

 .include <bsd.init.mk>

+.if ${.MAKE.LEVEL} == 0 && ${.MAKE.MODE:Mmeta*} != "" && !empty(SUBDIR)
+.if "${SUBDIR}" == "@auto"
+SUBDIR = ${:!echo ${.CURDIR}/*/Makefile!:H:T:O:N*}
+.endif
+.include <meta.subdir.mk>
+.else
 DISTRIBUTION?= base
 .if !target(distribute)
 distribute:
@@ -92,3 +98,5 @@
 install: beforeinstall realinstall afterinstall
 .ORDER: beforeinstall realinstall afterinstall
 .endif
+
+.endif
Index: share/mk/bsd.libnames.mk
===
--- share/mk/bsd.libnames.mk (revision 219256)
+++ share/mk/bsd.libnames.mk (working copy)
@@ -7,6 +7,7 @@
 .if !target(__<bsd.init.mk>__)
 .error bsd.libnames.mk cannot be included directly.

 .endif
+.-include <local.libnames.mk>

 LIBCRT0?= ${DESTDIR}${LIBDIR}/crt0.o

Index: share/mk/bsd.sys.mk
===
--- share/mk/bsd.sys.mk (revision 219256)
+++ share/mk/bsd.sys.mk (working copy)
@@ -89,3 +89,34 @@

 # Allow user-specified additional warning flags
 CFLAGS += ${CWARNFLAGS}
+
+.if !empty(CLEANFILES)
+.NOPATH: ${CLEANFILES}
+.endif
+
+CFLAGS += ${CFLAGS_LAST}
+CXXFLAGS += ${CXXFLAGS_LAST}
+
+# from netbsd's bsd.own.mk
+PHONY_NOTMAIN = all clean cleandir depend dependall distclean includes \
+ install lint obj regress tags beforedepend afterdepend \
+ beforeinstall afterinstall realinstall realdepend realall \
+ html subdir-all subdir-install subdir-depend
+.PHONY: ${PHONY_NOTMAIN}
+.NOTMAIN: ${PHONY_NOTMAIN}
+
+# handy for debugging
+.SUFFIXES: .S .c .cc .cpp .cpp-out
+
+
+.S.cpp-out .c.cpp-out:
+ @${CC} -E ${CFLAGS} ${.IMPSRC} | grep -v '^[[:space:]]*$$'
+
+.cc.cpp-out:
+ @${CXX} -E ${CXXFLAGS} ${.IMPSRC} | grep -v '^[[:space:]]*$$'
+
+.if !empty(STAGE_ROOT)
+.if !empty(STAGE_SETS)
+.include <meta.stage.mk>
+.endif
+.endif

Debugging
Being able to debug the build - when things appear not to be behaving as expected, is very
handy.

We can use -dM to see why bmake thinks a target is considered out of date.

For example, to see what happens if a build command changes, we can edit a .meta file
and subsitute -O for -O2:

$ mk -dM -DNO_DIRDEPS
Skipping meta for /c/sjg/work/FreeBSD/current/src/bin/sh.i386: .MAKE
Checking /c/sjg/work/FreeBSD/current/src/bin/sh for i386 ...
Skipping meta for objwarn: no commands
/c/sjg/work/FreeBSD/current/obj/i386/bin/sh/var.o.meta: 2: a build \
command has changed
cc -O -pipe -nostdinc -DSHELL -I. \
-I/c/sjg/work/FreeBSD/current/src/bin/sh \

-std=gnu99 -fstack-protector -Wsystem-headers \
-Werror -Wall -Wno-format-y2k -Wno-uninitialized \
-Wno-pointer-sign \
-I/c/sjg/work/FreeBSD/current/obj/stage/i386/usr/include \
-I/usr/include -c /c/sjg/work/FreeBSD/current/src/bin/sh/var.c
vs
cc -O2 -pipe -nostdinc -DSHELL -I. \
-I/c/sjg/work/FreeBSD/current/src/bin/sh \
-std=gnu99 -fstack-protector -Wsystem-headers \
-Werror -Wall -Wno-format-y2k -Wno-uninitialized \
-Wno-pointer-sign \
-I/c/sjg/work/FreeBSD/current/obj/stage/i386/usr/include \
-I/usr/include -c /c/sjg/work/FreeBSD/current/src/bin/sh/var.c
Building /c/sjg/work/FreeBSD/current/obj/i386/bin/sh/var.o
Building /c/sjg/work/FreeBSD/current/obj/i386/bin/sh/sh

There's actually quite a bit more noise, but the above is the interesting bit. Similarly, if we
delete a command from the meta file:

$ mk -dM -DNO_DIRDEPS
Skipping meta for /c/sjg/work/FreeBSD/current/src/bin/sh.i386: .MAKE
Checking /c/sjg/work/FreeBSD/current/src/bin/sh for i386 ...
Skipping meta for objwarn: no commands
/c/sjg/work/FreeBSD/current/obj/i386/bin/sh/var.o.meta: 3: \
there are extra build commands now that weren't in the meta data file
Building /c/sjg/work/FreeBSD/current/obj/i386/bin/sh/var.o
Building /c/sjg/work/FreeBSD/current/obj/i386/bin/sh/sh

You get the idea.

Apart from debug info from bmake itself, we can also get it from dirdeps.mk:

$ mk DEBUG_DIRDEPS='*/lib*'
bmake-20110327: "/c/sjg/work/FreeBSD/current/src/mk/dirdeps.mk" \
line 220: lib/libc.i386: DIRDEPS='lib/msun sys/i386/include \
sys/sys sys/x86/include stage'
bmake-20110327: "/c/sjg/work/FreeBSD/current/src/mk/dirdeps.mk" \
line 221: lib/libc.i386: _machines='i386'
bmake-20110327: "/c/sjg/work/FreeBSD/current/src/mk/dirdeps.mk" \
line 242: depdirs=/c/sjg/work/FreeBSD/current/src/lib/msun \
/c/sjg/work/FreeBSD/current/src/stage \
/c/sjg/work/FreeBSD/current/src/sys/i386/include \
/c/sjg/work/FreeBSD/current/src/sys/sys \
/c/sjg/work/FreeBSD/current/src/sys/x86/include
bmake-20110327: "/c/sjg/work/FreeBSD/current/src/mk/dirdeps.mk" \
line 243: qualified=
bmake-20110327: "/c/sjg/work/FreeBSD/current/src/mk/dirdeps.mk" \
line 244: unqualified=/c/sjg/work/FreeBSD/current/src/lib/msun \
/c/sjg/work/FreeBSD/current/src/stage \
/c/sjg/work/FreeBSD/current/src/sys/i386/include \
/c/sjg/work/FreeBSD/current/src/sys/sys \
/c/sjg/work/FreeBSD/current/src/sys/x86/include
bmake-20110327: "/c/sjg/work/FreeBSD/current/src/mk/dirdeps.mk" \
line 275: lib/libc.i386: /c/sjg/work/FreeBSD/current/src/lib/msun.i386 \
/c/sjg/work/FreeBSD/current/src/stage.i386 \
/c/sjg/work/FreeBSD/current/src/sys/i386/include.i386 \
/c/sjg/work/FreeBSD/current/src/sys/sys.i386 \
/c/sjg/work/FreeBSD/current/src/sys/x86/include.i386
bmake-20110327: "/c/sjg/work/FreeBSD/current/src/mk/dirdeps.mk" \
line 288: lib/libc.i386: /c/sjg/work/FreeBSD/current/src/lib/msun.i386 \
/c/sjg/work/FreeBSD/current/src/stage.i386 \
/c/sjg/work/FreeBSD/current/src/sys/i386/include.i386 \
/c/sjg/work/FreeBSD/current/src/sys/sys.i386 \
/c/sjg/work/FreeBSD/current/src/sys/x86/include.i386
bmake-20110327: "/c/sjg/work/FreeBSD/current/src/mk/dirdeps.mk" \

line 299: Looking for /c/sjg/work/FreeBSD/current/src/lib/msun/Makefile.depend.i386
bmake-20110327: "/c/sjg/work/FreeBSD/current/src/mk/dirdeps.mk" \
line 220: lib/libedit.i386: DIRDEPS='include lib/ncurses/ncursesw \
sys/i386/include sys/sys sys/x86/include stage'
bmake-20110327: "/c/sjg/work/FreeBSD/current/src/mk/dirdeps.mk" \
line 221: lib/libedit.i386: _machines='i386'
bmake-20110327: "/c/sjg/work/FreeBSD/current/src/mk/dirdeps.mk" \
line 242: depdirs=/c/sjg/work/FreeBSD/current/src/include \
/c/sjg/work/FreeBSD/current/src/lib/ncurses/ncursesw \
/c/sjg/work/FreeBSD/current/src/stage \
/c/sjg/work/FreeBSD/current/src/sys/i386/include \
/c/sjg/work/FreeBSD/current/src/sys/sys \
/c/sjg/work/FreeBSD/current/src/sys/x86/include
...
Checking /c/sjg/work/FreeBSD/current/src/bin/sh for i386 ...
Building /c/sjg/work/FreeBSD/current/obj/i386/bin/sh/sh
Updating .depend: sh.meta
Checking /c/sjg/work/FreeBSD/current/src/bin/sh/Makefile.depend.i386: .depend

The */lib* is matched against the DEP_RELDIR of the Makefile.depend* as they are
processed, so * matches all. You can also add the keyword depend and dirdeps.mk will
output:

bmake-20110327: "/c/sjg/work/FreeBSD/current/src/mk/dirdeps.mk" \
line 299: Looking for \
/c/sjg/work/FreeBSD/current/src/lib/msun/Makefile.depend.i386

for each Makefile.depend* it looks for.

And if all that isn't enough you can add extra magic to local.dirdeps.mk.

Finally, if you use my sys.mk you can do things like:

DEBUG_MAKE_FLAGS=-dM DEBUG_MAKE_DIRS='*/libc' mk

to have -dM turned on only in libc when .MAKE.LEVEL > 0 and only after sys.mk has
finished.

DEBUG_MAKE_FLAGS=-dM DEBUG_MAKE_SYS_DIRS='*/libc' mk

The same, except that -dM is turned on at the start of sys.mk.

DEBUG_MAKE_FLAGS0=-dc DEBUG_MAKE_SYS_DIRS0=$PWD \
DEBUG_MAKE_FLAGS=-dM DEBUG_MAKE_DIRS='*/libc' mk

turns on -dc at the start of sys.mk for .MAKE.LEVEL 0 and turns on -dM after sys.mk in
libc.

You could put similar magic in local.sys.mk of course.

Sparse tree

It is worth pointing out, that like the current Junos build, dirdeps.mk does not get upset
if a directory it thinks is a pre-requisite is missing. It doesn't even comment on the fact.

This makes it easy to work with a sparse tree and what we call a backing sandbox. The
idea is you may have a daily, weekly, whatever build of your branch, which you can
leverage. For example I could have:

.ifdef PROG
LDADD+= -L${STAGE_ROOT}${LIBDIR}

.if !empty(SHARED_STAGE_ROOT)
LDADD+= -L${SHARED_STAGE_ROOT}${LIBDIR}
.endif
.endif
CFLAGS_LAST+= -I${SHARED_STAGE_ROOT}/usr/include

in an appropriate *.mk, and any headers/libs not in my $SB would be found in the shared
stage tree.

Further, because the headers and libs in that shared stage tree have their .dirdep files
containing the RELDIR to visit, I still harvest all the correct dependency information.

Conclusion
In many ways meta mode simply builds on the aspects of our build which have worked
well.

At the same time, it provides us with a simple solution to some rather complex problems.

We expect others can benefit in the same way.

URLs:

http://www.crufty.net/help/sjg/bmake.htm
ftp://ftp.netbsd.org/pub/NetBSD/misc/sjg/bmake-20110505.tar.gz
ftp://ftp.netbsd.org/pub/NetBSD/misc/sjg/mk-20110505.tar.gz

Author: sjg@juniper.net
Revision: $Id: building-bsd.txt,v 1.20 2011/05/14 18:27:22 sjg Exp sjg $
Copyright: Juniper Networks, Inc.

mailto:sjg@juniper.net

