
FreeBSD, Capsicum, GELI and ZFS 
as key components of a security appliance



Paweł Jakub Dawidek 
<p.dawidek@wheelsystems.com> 

<pjd@FreeBSD.org>









Choosing version control system



Choosing version control system

objective comparison to the rescue:
do they rhyme?

perforce rhymes with "the right course"
mercurial doesn't rhyme

git rhymes with ...

we tried most of them, though call

subversion rhymes with aversion or perversion



Building from source



Building from source

running make in top source directory produces:




fudo[-branch]-<changeset>.img

bootable installation image




fudo[-branch]-<changeset>.upg


signed upgrade image



Building from source

libevent libpng

FreeRDP

net-snmp

OpenLDAP

sudo
ffmpeg

rsync

PostgreSQL

ucarp

nginxPgBouncer
msmtp

Django

FreeTypejpeg

Python

psycopg2

html5lib
pyasn1

xhtml2pdf

Imagingcurl
ReportLab

flup

south
FreeBSD



Building from source

dbuild nginx nginx_tcp_proxy_module '

        ${MAKE} clean

        ./configure [...] || exit 1

        ${MAKE} ${MAKE_FLAGS} || exit 1

'

dbuild freerdp '

        cmake . [...]

        ${MAKE} clean

        ${MAKE} || exit 1

'



GELI

• block-level data encryption

• AES-XTS, AES-CBC, Blowfish-CBC, Camellia-CBC, 3DES-CBC


• integrity verification / data authentication

• HMAC/MD5, HMAC/RIPEMD160, HMAC/SHA{1,256,384,512}


• multifactor user keys


• two independent keys


• ability to encrypt root file system



GELI

• passphrase strengthened using PKCS#5v2


• hardware acceleration (via opencrypto)


• suspend/resume


• ability to use one-time keys



ZFS
• storage pool, integrated volume manager


• dynamic striping


• copy-on-write transactional model


• RAIDZ{1,2,3}


• hybrid storage model


• snapshots and clones


• lightweight file systems creation


• adaptive endianness



ZFS
• compression


• deduplication


• I/O priority with deadline scheduling


• end-to-end checksumming


• intelligent scrubbing and resilvering


• ditto blocks


• file systems and disk-like devices


• per-dataset configuration



Capsicum

kernel infrastructure that provides:


• tight sandboxing (cap_enter(2))


• capabilities



Boot

• keys generation during first boot


• stored on two pen-drives


• one of them required for the following boots


• once the box is running, pen-drive can be removed



File systems layout
            34   3907029101   disk0   GPT   (1.8T) 

            34                     6          1   wheelsystems-config   (3.0k) 

            40                 128          2   freebsd-boot   (64k) 

          168         8388608          3   freebsd-ufs   (4.0G) 

  8388776         8388608          4   freebsd-ufs   [bootme]   (4.0G) 

16777384         8388608          5   freebsd-ufs   (4.0G) 

25165992       16777216          6   freebsd-swap   (8.0G) 

41943208   3865085920          7   freebsd-zfs   (1.8T)



Upgrade
            34   3907029101   disk0   GPT   (1.8T) 

            34                     6          1   wheelsystems-config   (3.0k) 

            40                 128          2   freebsd-boot   (64k) 

          168         8388608          3   freebsd-ufs   (4.0G) 

  8388776         8388608          4   freebsd-ufs   [bootme]   (4.0G) 

16777384         8388608          5   freebsd-ufs   (4.0G) 

25165992       16777216          6   freebsd-swap   (8.0G) 

41943208   3865085920          7   freebsd-zfs   (1.8T)



Upgrade
            34   3907029101   disk0   GPT   (1.8T) 

            34                     6          1   wheelsystems-config   (3.0k) 

            40                 128          2   freebsd-boot   (64k) 

          168         8388608          3   freebsd-ufs   (4.0G) 

  8388776         8388608          4   freebsd-ufs   [bootme]   (4.0G) 

16777384         8388608          5   freebsd-ufs   [bootme,bootonce]   (4.0G) 

25165992       16777216          6   freebsd-swap   (8.0G) 

41943208   3865085920          7   freebsd-zfs   (1.8T)



Upgrade
            34   3907029101   disk0   GPT   (1.8T) 

            34                     6          1   wheelsystems-config   (3.0k) 

            40                 128          2   freebsd-boot   (64k) 

          168         8388608          3   freebsd-ufs   (4.0G) 

  8388776         8388608          4   freebsd-ufs   [bootme]   (4.0G) 

16777384         8388608          5   freebsd-ufs   [bootfailed]   (4.0G) 

25165992       16777216          6   freebsd-swap   (8.0G) 

41943208   3865085920          7   freebsd-zfs   (1.8T)



Upgrade
            34   3907029101   disk0   GPT   (1.8T) 

            34                     6          1   wheelsystems-config   (3.0k) 

            40                 128          2   freebsd-boot   (64k) 

          168         8388608          3   freebsd-ufs   (4.0G) 

  8388776         8388608          4   freebsd-ufs   [bootme]   (4.0G) 

16777384         8388608          5   freebsd-ufs   [bootonce]   (4.0G) 

25165992       16777216          6   freebsd-swap   (8.0G) 

41943208   3865085920          7   freebsd-zfs   (1.8T)



Upgrade
            34   3907029101   disk0   GPT   (1.8T) 

            34                     6          1   wheelsystems-config   (3.0k) 

            40                 128          2   freebsd-boot   (64k) 

          168         8388608          3   freebsd-ufs   (4.0G) 

  8388776         8388608          4   freebsd-ufs   (4.0G) 

16777384         8388608          5   freebsd-ufs   [bootme]   (4.0G) 

25165992       16777216          6   freebsd-swap   (8.0G) 

41943208   3865085920          7   freebsd-zfs   (1.8T)



Upgrade

• /etc/rc.d/gptboot


• /etc/upgrade/UPG<NUMBER>


• /etc/rc.d/copyupg


• /data/upgrade/todo/


• /data/upgrade/done/



ZFS

• a file system


• developed at Sun Microsystems (R.I.P. Why God^WLarry? WHY?!)


• ported to FreeBSD by some awesome, but 
inconspicuous Polish guy



FUDO goals

• gate to the most valuable and sensitive data


• full accountability


• strong authentication


• secure data storage


• secure protocols handling (many of them)


• performance (cryptography cost x3)



On-disk data protection
• GELI AES-XTS-256


• keys on removable pen-drives

• generated at customer's place on first boot


• can be removed once the box is running


• ZFS checksum: SHA256


• AES-NI


• trusted timestamping


• RAIDZ2



ZFS

• one big RAIDZ2


• compression provides twice as much space (soon lz4)


• snapshots used to replicate sessions data



Session protection

• session handled by two processes: master and slave


• master has some privileges


• slave is closed in Capsicum sandbox


• slave runs all protocol logic (ssh, rdp, vnc, etc.)


• master is responsible for authentication


• master provides resources and capabilities to slave



Session protection

when slave is executed it gets:


• 1 second of CPU time


• 5 minutes of wall clock time


• 32MB of memory


• read-only access to configuration/resource directory


• communication socket to its master 



Session protection



slave cannot access:


• file systems


• network


• process list


• SysV IPC


• global namespaces in general


• most system calls



Session protection

once the user is authenticated by master, slave gets:


• descriptor with open connection to the server


• credentials to log into the server


• additional 32MB of memory


• unlimited CPU time


• append-only descriptor to session dump



Session protection

even with additional capabilities slave cannot:


• open network connection to any other server


• access data of any other session


• access any processes in the system


• overwrite already stored session data


• access system configuration or any files in general



Multimaster clustering

• everything replicated async


• session data replicated using zfs send/recv


• session metadata (database) replicated using pair of 
daemons developed in house



Database replication

• what do we lose doing async instead of sync replication


• how to avoid collisions of row IDs within the cluster


• how to distinguish INSERT from DELETE


• how to deal with UPDATE collisions

Potential problemsSolutions



Q: What do we lose doing async instead of sync replication?

A: Nothing.

Database replication
Solutions



Q: How to avoid collisions of row IDs within the cluster?

A: ID starts at node serial number * 2^36.

Database replication
Solutions



Q: How to distinguish INSERT from DELETE?

A: Never DELETE.

Database replication
Solutions



Q: How to deal with UPDATE collisions?

A: Maintain modify_at, received_at rows for every table.

Database replication
Solutions

SELECT * FROM table WHERE 

        (modified_on = myserial AND modified_at > nodetime) OR 

        (modified_on != myserial AND received_at > nodetime) 

ORDER BY created_at



Conclusions

• name your VCS wisely

• use ZFS, GELI and Capsium

• don't forget to lock your FUDO panel

• avoid my talks



Questions?



Questions?


