The History and Future of Core Dumps in FreeBSD

Sam W. Gwydir, Texas A&M University sam@samguwydir. com

Abstract

Crash dumps, also known as core dumps, have been a
part of BSD since its beginnings in Research UNIX.
Though 38 years have passed since doadump() came
about in UNIX/32V, core dumps are still needed and uti-
lized in much the same way they were then. However, as
underlying assumptions about the ratio of swap to RAM
have proven inappropriate for modern systems, several
extensions have been made by those who needed core
dumps on very large servers, or very small embedded
systems. Frustratingly these extensions have not made it
to upstream FreeBSD.

The following paper begins with a quick background
on what core dumps are and why operators might need
them. Following that the current state of the core dump
facility and some of the more common extensions in use
are examined. We conclude with a call to action for
upstreaming these extensions and modularizing the core
dump code such that different methods of core dump can
be dynamically loaded into the kernel on demand.

In addition a complete history of core dumps in UNIX
and BSD was produced as research for this paper and can
be found in the appendix.

1 Introduction

The BSD core dump facility performs a simple yet vital
service to the operator: it preserves a copy of the contents
of system memory at the time of a fatal error for later
debugging.

This copy or “dump” can be a machine readable form
of the complete contents of system memory, or just the
set of kernel pages that are active at the time of the crash.
There is also support for dumping a less complete but
human readable debugger scripting output.

Throughout the history of UNIX operating systems,
different methods have been used to produce a core
dump. In the earliest UNIXes magnetic tape was the

only supported dump device but when hard disk support
matured, swap space was used, obviating the need for
changing out tapes before a dumpﬂ Modern and em-
bedded systems continue to introduce new constraints
that have motivated the need for newer methods of ex-
filtrating a core dump from a faltering kernel.

The FreeBSD variant of the BSD operating system has
introduced gradual extensions to the core dumping fa-
cility. FreeBSD 6.2 introduced “minidumps”, a subset
of a full dump that only consists of active kernel mem-
ory. FreeBSD 7.1’s textdumps (4) consist of the result
of debugger commands input interactivly in DDB or via
scrip FreeBSD 12-CURRENT introduced support for
public-key cryptographic encryption of core dumps.

Though not in the main source tree, compressed
dumps and the ability to dump to a remote network de-
vice exist and function. While promising, these exten-
sions have been inconsistent in their integration and in-
teroperability.

Another BSD derived OS, Mac OS X has also intro-
duced similar compression and network dumping fea-
tures into their kernel albeit with a distinct pedigree from

FreeB S El

The following paper will provide a historical survey
of the dump facility itself, from its introduction in UNIX
to its current form in modern BSDs and BSD derived
operating systems. We will also explore these core dump
extensions, associated tools, and describe an active effort
to fully modularize them, allowing the operator to enable
one or more of them simultaneously.

!crash(8) - 3BSD
Zhttps://lists.freebsd.org/pipermail/
freebsd-current/2007-December/081626.html
‘https://developer.apple.com/library/content/
technotes/tn2004/tn2118.html
“https://opensource.apple.com/source/xnu/xnu-3789.
31.2/0sfmk/kdp/kdp_core.c.auto.html

https://lists.freebsd.org/pipermail/freebsd-current/2007-December/081626.html
https://lists.freebsd.org/pipermail/freebsd-current/2007-December/081626.html
https://developer.apple.com/library/content/technotes/tn2004/tn2118.html
https://developer.apple.com/library/content/technotes/tn2004/tn2118.html
https://opensource.apple.com/source/xnu/xnu-3789.31.2/osfmk/kdp/kdp_core.c.auto.html
https://opensource.apple.com/source/xnu/xnu-3789.31.2/osfmk/kdp/kdp_core.c.auto.html

2 Motivation

In UNIX and early BSDs core dumps were originally
made to magnetic tape which was superseded by dump-
ing to a swap partition on a hard disk since at least 3BSD.
For decades since, increases in physical system memory
and swap partition size have loosely tracked increases in
available persistent memory, allowing for the continued
use of this paradigm.

However, recent advances in commodity system hard-
ware have upended the traditional memory to disk space
ratio with systems now routinely utilizing 1TB or more
physical memory whilst running on less than 256GB of
solid state disk. Given that the kernel memory foot-
print has grown in size, the assumption that disk space
would always allow for a swap partition large enough for
a core dump has proved to be inaccurate. This change
has spurred development of several extensions to the
core dumping facility, including compressed dumping to
swap and dumping over the network to a server with disk
space for modern core dumps. Because dumps contain
all the contents of memory, any sensitive information in
flight at the time of a crash appears in the dump. For
this reason encrypted dumps have been recently added to
FreeBSDF|

While dealing with the above problems the author and
his colleagues became closely familiar with the state of
the core dump code and its associated documentation.
As users of the core dump code they felt a need for more
flexibility and extensibity in the core dump routines of
FreeBSD. The author intends to provide a basis for the
argument that the core dump code should be modularized
for the flexibility that provides to operators.

In addition it is hoped that the information herein is
of use to inform further work on core dumps, failing that
we hope it is interesting.

3 The Present

3.1 Core Dumps in FreeBSD
3.1.1 Quick Background

While reading this paper you may wish to take a crash
dump on your system and play around with the features
discussed. The following is a quick “crash” course.

First configure the system dump device in
/etc/rc.conf or using dumpon(8) ﬁ The easiest
way is to use dumpdev=’>AUTO’, which will set the
dumpdev to the first configured swap device, make sure
your swap partition is large enough for a core dump,

Shttps://svnweb.freebsd.org/base?view=revision&
revision=309818

%https://www.freebsd.org/doc/en/books/
developers-handbook/kerneldebug.html

if using dumpon(8) use swapinfo to find a suitable
partition. Next, if you are using the default dumpdir,
make sure it exists and set permissions accordingly.
Now, in order to generate a kernel dump you will need
to panic your kernel, there are several ways to do this,
including writing a program that calls panic(9), using
dtrace to call panic or the simplest using the sysctl,
sysctl debug.kdb.panic=1. Note this will crash and
reboot your system.
For those who prefer shell to English:

mkdir /var/crash

chmod 700 /var/crash
swapinfo

dumpon -v /dev/daOp2
sysctl debug.kdb.panic=1

H oH H HH

If your dumpdir is configured -correctly,
savecore(8) will run automatically upon reboot.
If not, run savecore(8) manually.

3.1.2 Full Core Dump Procedure

When a UNIX-like system such as FreeBSD encounters
an unrecoverable and unexpected error the kernel will
“panic”. Though the word panic has connotations of ir-
rationality, the function panic (9) maintains composure
while it shuts down the running system and attempts to
save a core dump to a configured dump device.

What follows is a thorough description of the
FreeBSD core dump routine (as of FreeBSD
11-RELEASE) starting with doadump() in
sys/kern/kern_shutdown. c.

doadump () is called by kern_reboot (), which shuts
down “the system cleanly to prepare for reboot, halt, or
power off.” [] kern_reboot () calls doadump () if the
RB_DUMP flag is set and the system is not “cold” or al-
ready creating a core dump. doadump () takes a boolean
informing it to whether or not to take a “text dump”, a
form of dump carried out if the online kernel debugger,
DDB, is built into the running kernel. doadump () returns
an error code if the system is currently creating a dump,
the dumper is NULL and returns error codes on behalf of
dumpsys ().

doadump (boolean_t textdump) starts the core
dump procedure by saving the current context with a
call to savectx(). At this point if they are config-
ured, a “text dump” can be carried out. Otherwise
a core dump is invoked using dumpsys(), passing it
a struct dumper. dumpsys() is defined on a per-
architecture basis. This allows different architectures
to setup their dump structure differently. dumpsys ()

"kern_shutdown.c - https://svnweb.freebsd.org/base/
head/sys/kern/kern_shutdown.c?view=markup#1336

https://svnweb.freebsd.org/base?view=revision&revision=309818
https://svnweb.freebsd.org/base?view=revision&revision=309818
https://www.freebsd.org/doc/en/books/developers-handbook/kerneldebug.html
https://www.freebsd.org/doc/en/books/developers-handbook/kerneldebug.html
https://svnweb.freebsd.org/base/head/sys/kern/kern_shutdown.c?view=markup#l336
https://svnweb.freebsd.org/base/head/sys/kern/kern_shutdown.c?view=markup#l336

calls dumpsys_generic() passing along the struct
dumperinfo it was called with. dumpsys_generic()
is defined in sys/kern/kern_dump.c and is the foun-
dation of the core dump procedure.

There are several main steps to the
dumpsys_generic() procedure. The main steps

are as follows. At any point if there is an error condition, Table 2: kerneldumpheader Format
goto failure cleanup at the end of the procedure. Field Value
magic “FreeBSD Kernel Dump”
1. Fill in the ELF header. architecture “amd64”
version 1 (kdh format version)
2. Calculate the dump size. architectureversion | 2
dumplength varies, excludes headers
3. Determine if the dump device is large enough. dumptime current time
blocksize block size
4. Fill in kernel dump header hostname hostname
versionstring version of OS
5. Begin Dump panicstring panic(9) message
parity parity bits
(a) Leader
(b) ELF Header
(c) Program Headers
(d) Memory Chunks
(e) Trailer
6. End Dump
After this is done the kernel gives a zero length block
to dump_write() to “Signal completion, signoff and
exit stage left.”” And our core dump is complete. i Table 3: ehdr ELF Header Format
Field Value
e_ident [EI_MAGO] 0x7f
3.1.3 Full Core Dump Contents e_ident [EI_MAG1] ‘E’
e_ident [EI_MAG2] ‘v
The canonical form of core dump is the “full dump”. Full e_ident [EI_MAG3] F
dumps are created via the doadump () code path which e_ident [EI_CLASS] 2 (64-bit)
starts in sys/kern/kern_shutdown.c. The resulting e_ident [EI_DATA] 1 (little endian)
dump is an ELF formatted binary written to a configured e_ident [EI_VERSION] | 1 (ELF version 1)
swap partition. The following is based on amd64 code e_ident [EI_OSABI] 255
and is the result of dumpsys_generic(). This will be e_type 4 (core)
similar in format but different values for different archi- e_machine 62 (x86-64)
tectures. e_phoff size of this header
e_flags 0
Table 1: Full Dump Format e_ehsize size of this header
Field : Description e_phentsize size of program header
Leader See TableDl e_shentsize size of section header
ELF Header See Table
Program Headers
Memory Chunks
Trailer See Table

3.1.4 Minidump Procedure and Contents

FreeBSD 6.2 introduced a new form of core dump
termed, “minidumps”. Instead of dumping all of phsyical
memory to guarantee all relevent information is archived,
minidumps dump “only memory pages in use by the ker-
nel.]

Minidumps use a custom format in lieu of ELF. The
format of a modern minidump (version 2) can be found

in table[d]

Table 4: Mini Dump Format

Field Description
Leader See Table[2]
Minidump Header See Table
Message Buffer message buffer contents
Bitmap map of kernel pages
Kernel Page Directory
Memory Chunks
Trailer See Table [§|
Table 5: minidumphdr Format
Field Value
magic “minidump FreeBSD/amd64”
version 2
msgbufsize | size of message buffer
bitmapsize | size of bitmap
pmapsize size of physical memory map
kernbase ptr to start of kernel mem
dmapbase ptr to start of direct map
dmapend ptr to end of direct map

The minidump procedure in general is similiar to
that of the full dump but with the added step of cre-
ating a bitmap that indicates which pages are to be-
come part of the dump. The minidump procedure de-
tailed here is based on the AMDO64 code as found
in sys/amd64/amd64/minidump_machdep.cﬂ but it
nearly identical for other architectures.

1. Create bitmap describing pages to be dumped.
2. Calculate the dump size.
3. Determine if the dump device is large enough.
4. Fill in minidump header

5. Fill in kernel dump header

8https://wuw.freebsd.org/doc/en/books/
developers-handbook/kerneldebug.html

Yhttps://svnweb.freebsd.org/base/head/sys/amd64/
amd64/minidump_machdep.c?revision=157908&view=markup

6. Begin Dump

(a) Leader

(b) Minidump Header

(c) Message Buffer

(d) Bitmap

(e) Kernel Page Directory
(f) Memory Chunks

(g) Trailer

7. End Dump

The minidump will fail for any of the reasons a
full dump will and also if the dump map grows
while creating it. This will cause the routine
to retry up to dump_retry_count times, the de-
fault is 5 times but can be set with the sysctl
machdep.dump_retry_count.

3.1.5 Textdump Procedure and Contents

FreeBSD added a new type of dump, the textdump (4).
“The textdump facility allows the capture of kernel
debugging information to disk in a human-readable
rather than the machine-readable form normally used
with kernel memory dumps and minidumps.’ It
doadump () in kern_shutdown.c is given a boolean
value of ’true’ then a minidump or full dump is can-
celled and instead textdump_dumpsys () is invoked in
sys/ddb/db_textdump.c.

Since textdumps are not binary data, textdumps are
written out in the ustar tar file format. This tar contains
several files listed in [aﬂ There exist several sysctls to
select which files an operator wishes to include. These
are listed in textdump (4).

Table 6: textdump(4) Format

File Description
Leader See Table
ddb.txt Captured DDB output

config.txt | Kernel configuration
msgbuf . txt Kernel message buffer
panic.txt Kernel panic message
version.txt | Kernel version string
Trailer See Table

The textdump (4) procedure is similar in its setup to
the other types of dumps but has several differences in

Ohttps://wuw.freebsd.org/cgi/man. cgi?query=
textdump&apropos=0&sektion=0&manpath=FreeBSD+11.
O-RELEASE+and+Ports&arch=default&format=html

Uhttps://lists.freebsd.org/pipermail/
freebsd-current/2007-December/081626.html

https://www.freebsd.org/doc/en/books/developers-handbook/kerneldebug.html
https://www.freebsd.org/doc/en/books/developers-handbook/kerneldebug.html
https://svnweb.freebsd.org/base/head/sys/amd64/amd64/minidump_machdep.c?revision=157908&view=markup
https://svnweb.freebsd.org/base/head/sys/amd64/amd64/minidump_machdep.c?revision=157908&view=markup
https://www.freebsd.org/cgi/man.cgi?query=textdump&apropos=0&sektion=0&manpath=FreeBSD+11.0-RELEASE+and+Ports&arch=default&format=html
https://www.freebsd.org/cgi/man.cgi?query=textdump&apropos=0&sektion=0&manpath=FreeBSD+11.0-RELEASE+and+Ports&arch=default&format=html
https://www.freebsd.org/cgi/man.cgi?query=textdump&apropos=0&sektion=0&manpath=FreeBSD+11.0-RELEASE+and+Ports&arch=default&format=html
https://lists.freebsd.org/pipermail/freebsd-current/2007-December/081626.html
https://lists.freebsd.org/pipermail/freebsd-current/2007-December/081626.html

particular because the dump is in ustar format containing
several text files instead of a binary format containing
kernel pages.

1. Check if minimum amount of space is available on
dump device

2. Set start of dump at the end of the swap partition
minus the size of the dump header

3. Fill in kernel dump header
4. Begin Dump

(a) Trailer
(b) ddb.txt
(c) config.txt
(d) msgbuf.txt
(e) panic.txt
(f) version.txt
(g) Header

(h) Re-write Trailer with correct size

5. End Dump

If an error occurs during this procedure, report said
error. If not, tell dump_write() to write a zero-length
block to signifiy the end of the dump and report that the
dump suceeded and return to executing the rest of the
machine independent dump code.

3.2 Core Dumps in Mac OS X

Mac OS X is capable of creating compressed core dumps
and dumping them locally, or over the network using a
modified t£tpd (8) from FreeBSD called kdumpd (S)E
Network dumping “has been present since Mac OS X
10.3 for PowerPC-based Macintosh systems, and since
Mac OS X 10.4.7 for Intel-based Macintosh systems.’ﬁl
In addition dumps over FireWire are supported for situ-
ations where the kernel panic is caused by the Ethernet
driver or network code.

In xnu/osfmk/kdp/kdp_core.c Mac OS X gzips its
core dump before writing it out to disk, and is otherwise
much like the FreeBSD “full dump” procedure with one
major difference besides its features?. Notably, Mac OS
X uses a different executable image-format called Mach-
0, as opposed to ELF, because OS X runs a hybrid Mach
and BSD kernel called XNU?J

1. Initialize gzip

2https://opensource.apple.com/source/network_cmds/
network_cmds-396.6/kdumpd. tproj/kdumpd.8.auto.html
Dhttps://en.wikipedia.org/wiki/Core_dump

2. Determine where to write dump

(a) If local, determine offset to place file header,
panic and core log

(b) If remote, setup buffer for compressed core
and packet size

3. Traverse the pmap for dumpable pages
4. Fill in Mach-O header
5. Begin Dump Write/Transmission

(a) Mach-O Header

(b) Information about panicked thread’s state
(c) Information about dump output location
(d) Pad with zeroes to page align

(e) Kernel Pages

(f) Signal Completion with zero length write
(g) Print out Information about Dump

(h) If Local, write out debug log and gzip file
header

6. End Dump Write/Transmission

If an error is detected at any point, return and report
the given error message.

3.3 Core Dumps in Illumos

“illumos is a free and open-source Unix operating sys-
tem. It derives from OpenSolaris, which in turn derives
from SVR4 UNIX and Berkeley Software Distribution
(BSD).’FE] Illumos has several attractive features in its
core dump routine including “live dumping”, compres-
sion and support for swap on zvol as a dump device.

The Illumos dump routine, dumpsys () can be found
inusr/sys/uts/common/os/dumpsubr. c. In contrast
to the other dump routines explained previously, the II-
lumos dump routine is very complex but with that com-
plexity comes the several features mentioned above that
are not available elsewhere.

Ilumos’ savecore(1M) has the ability to “live
dump”, creating a dump of a running syste
savecore (1M) does note that this dump will not be
entirely self consistent because the machine is not sus-
pended while dumping.

In addition to a version of savecore(1M), Illumos
has a tool analogous to FreeBSD’s dumpon(8) called
dumpadm (1M) which primarily is used to set the cur-
rent dump device. Importantly this dump device can be a
swap partition in a ZFS zvol. dumpadm (1M) is also used

Yhttps://en.wikipedia.org/wiki/I1lumos
Dhttps://illumos.org/man/im/savecore

https://opensource.apple.com/source/network_cmds/network_cmds-396.6/kdumpd.tproj/kdumpd.8.auto.html
https://opensource.apple.com/source/network_cmds/network_cmds-396.6/kdumpd.tproj/kdumpd.8.auto.html
https://en.wikipedia.org/wiki/Core_dump
https://en.wikipedia.org/wiki/Illumos
https://illumos.org/man/1m/savecore

to configure save compression and is able to estimate the
size of a dump on a running syste

3.4 Backtrace.io

“Backtrace is a company that is aiming [to improve] the
post-mortem debugging process.” Unlike the rest of
this paper, Backtrace is not an operating system’s dump
process or its features, but a tool for analyzing cores once
they are generated.

Backtrace supports several languages for userspace
core dumps, including C, C++, Go, Python. Most impor-
tantly, Backtrace supports FreeBSD kernel core dumps.
This section will focus on FreeBSD kernel core dump
support.

Backtrace does not replace the FreeBSD core dump
procedure, but is a service that collects core dumps and
helps the operator traige and fix the bugs that cause those
cores to be dumped.

Backtrace is a system made up of several parts:
coresnapd, a snapshot generator; a set of analysis mod-
ules for automated debugging; coroner, an object store;
a web interface and hydra its terminal counterpart

After a sucessful savecore(8), coresnapd and a set
of companion scripts create a “snapshot” of any cores
generated and send it back to coroner A snapshot
contains a stack-trace across all threads, active regions of
memory, requested global variables, environment infor-
mation like virtual memory and CPU statistics, custom
metadata such as datacenter, and annotations created by
the analysis modules such as automated checking for a
double free() of a pointer @8 This results in a self-
contained package that is smaller than a minidump and
can be analyzed on a machine with an environment dif-
fering from the machine that created the original core
Once collected, Backtrace’s web interface can be used to
categorize and triage different faults by any metadata or
by panic string, for example. After triage, the web inter-
face or hydra can be used to analyze snapshots El

Backtrace has also sponsored work on FreeBSD it-
self, by improving kvm(3)’s libkvm physical address
lookup time from a linear time lookup to a constant
time lookup. This provides gains in runtime com-
plexity and space complexity of dealing with cores via
crashinfo(8) orkgdb(1) especially for those systems
with large amounts of RAM. E]

1%https://illumos . org/man/1m/dumpadm
Thttps://backtrace.io/blog/
supporting-freebsd-backtrace-and-bsd-now/
*https://documentation.backtrace.io/overview/
Yhttps://documentation.backtrace.io/coresnap_
integration/
“https://backtrace.io/blog/whats-a-coredump/
2lhttps://documentation.backtrace.io/hydra/
Zhttps://svnweb.freebsd.org/base?view=revision&

4 The Future

There are several extensions to the FreeBSD core dump
code that exist as sets of patches on mailing lists and
wikis but are not found in upstream FreeBSD.

First, we provide some background on several exten-
sions and tools including dumping over the network,
compressed dumps and a tool for estimating the size of
a minidump. Then we will explore the benefits of modu-
larized core dump code.

4.1 netdump - Network Dump

Crash dumping over the network can be especially useful
in embedded systems that do not have adequately sized
swap partitions.

The original netdump code was written by Darrell An-
derson at Duke around 2000 in the FreeBSD 4.x era as
a kernel module. This code was later ported to modern
FreeBSD in 2010 at Sandvine with the intention of being
part of FreeBSD 9.0, which did not succeed.

Currently there exists working netdump code from
Isilon that can be applied with some difficulty to ver-
sions of FreeBSD after 11.0. Network dumps have not
yet made it into upstream FreeBSD.

4.2 Compressed Dump

Modern systems often have several hundred gigabytes of]
RAM and will soon often have terabytes. This means full
crash dumps, even minidumps, can be much larger than
most sensible amounts of swap.

Though savecore(8) has the ability to compress
core dumps with the ¢-z’ option, this only compresses
a core once it 1S copied into the main filesystem. The
core dump that was written to the swap partition remains
uncompressed.

Compressed dumps see a 6:1 to 14:1 compression ra-
tio for core dumps with a slight penalty in the time re-
quired to write the dump initiall However the follow-
ing savecore (8) on the next boot is faster, resulting in
a faster dump and reboot sequence.

Compressed dumps have not yet made it into upstream
FreeBSD.

4.3 minidumpsz - Minidump Size Estima-
tion
minidumpsz is a kernel module that can do an online

estimation of the size of a minidump if it were to occur
at the time sysctl debug.mini_dump_size is called.

revision=302976
“’https://lists.freebsd.org/pipermail/freebsd-arch/
2014-November/016231.html

https://illumos.org/man/1m/dumpadm
https://backtrace.io/blog/supporting-freebsd-backtrace-and-bsd-now/
https://backtrace.io/blog/supporting-freebsd-backtrace-and-bsd-now/
https://documentation.backtrace.io/overview/
https://documentation.backtrace.io/coresnap_integration/
https://documentation.backtrace.io/coresnap_integration/
https://backtrace.io/blog/whats-a-coredump/
https://documentation.backtrace.io/hydra/
https://svnweb.freebsd.org/base?view=revision&revision=302976
https://svnweb.freebsd.org/base?view=revision&revision=302976
https://svnweb.freebsd.org/base?view=revision&revision=302976
https://svnweb.freebsd.org/base?view=revision&revision=302976
https://svnweb.freebsd.org/base?view=revision&revision=302976
https://svnweb.freebsd.org/base?view=revision&revision=302976
https://svnweb.freebsd.org/base?view=revision&revision=302976
https://svnweb.freebsd.org/base?view=revision&revision=302976
https://svnweb.freebsd.org/base?view=revision&revision=302976
https://svnweb.freebsd.org/base?view=revision&revision=302976
https://svnweb.freebsd.org/base?view=revision&revision=302976
https://svnweb.freebsd.org/base?view=revision&revision=302976
https://svnweb.freebsd.org/base?view=revision&revision=302976
https://svnweb.freebsd.org/base?view=revision&revision=302976
https://svnweb.freebsd.org/base?view=revision&revision=302976
https://svnweb.freebsd.org/base?view=revision&revision=302976
https://svnweb.freebsd.org/base?view=revision&revision=302976
https://svnweb.freebsd.org/base?view=revision&revision=302976
https://svnweb.freebsd.org/base?view=revision&revision=302976
https://svnweb.freebsd.org/base?view=revision&revision=302976
https://svnweb.freebsd.org/base?view=revision&revision=302976
https://svnweb.freebsd.org/base?view=revision&revision=302976
https://svnweb.freebsd.org/base?view=revision&revision=302976
https://svnweb.freebsd.org/base?view=revision&revision=302976
https://svnweb.freebsd.org/base?view=revision&revision=302976
https://svnweb.freebsd.org/base?view=revision&revision=302976
https://svnweb.freebsd.org/base?view=revision&revision=302976
https://svnweb.freebsd.org/base?view=revision&revision=302976
https://svnweb.freebsd.org/base?view=revision&revision=302976
https://svnweb.freebsd.org/base?view=revision&revision=302976
https://svnweb.freebsd.org/base?view=revision&revision=302976
https://svnweb.freebsd.org/base?view=revision&revision=302976
https://svnweb.freebsd.org/base?view=revision&revision=302976
https://svnweb.freebsd.org/base?view=revision&revision=302976
https://svnweb.freebsd.org/base?view=revision&revision=302976
https://svnweb.freebsd.org/base?view=revision&revision=302976
https://svnweb.freebsd.org/base?view=revision&revision=302976
https://svnweb.freebsd.org/base?view=revision&revision=302976
https://svnweb.freebsd.org/base?view=revision&revision=302976
https://svnweb.freebsd.org/base?view=revision&revision=302976
https://svnweb.freebsd.org/base?view=revision&revision=302976
https://svnweb.freebsd.org/base?view=revision&revision=302976
https://svnweb.freebsd.org/base?view=revision&revision=302976
https://svnweb.freebsd.org/base?view=revision&revision=302976
https://svnweb.freebsd.org/base?view=revision&revision=302976
https://svnweb.freebsd.org/base?view=revision&revision=302976
https://lists.freebsd.org/pipermail/freebsd-arch/2014-November/016231.html
https://lists.freebsd.org/pipermail/freebsd-arch/2014-November/016231.html

minidumpsz performs an inactive version of the
minidump routine, minidumpsys (), to estimate the size
of a dump if it were to take place at the time of the
sysctl’s calling.

Tllumos is also capable of performing an online dump
size estimation using dumpadm(1M)’s -e option which
estimates the size of the dump taking in account options
like compression [,

minidumpsz was created by Rodney W. Grimes for
the author’s work at Groupon and applies to FreeBSD
10.1 and FreeBSD 11. minidumpsz has not yet made it
into upstream FreeBSD.

4.4 Modularizing Dump Code

Currently if one would like to implement features or fixes
in the core dump code one would need to recompile their
kernel and reboot. This is highly undesireable when an
operator wants to upgrade or fix their production sys-
tems. Refactoring the dump code into loadable kernel
modules (LKM) would yield two major benefits for op-
erators: easier development of fixes and features and a
smaller kernel for embedded systems.

There is a proof of concept modularization of the
dump code working on FreeBSD 11.0p1@ This code
has not yet made it into upstream FreeBSD.

4.5 Dump to swap on zvol

Many users of FreeBSD use ZFS extensively. Though
FreeBSD supports most ZFS features it currently is not
recommended to use swap on a zvol as a dump device.
However Illumos distributions support this out of the box
and it is often the default 8.

This would be incredibly useful for users of ZFS in
enterprise settings because ZFS datasets and zvols can
be created, destroyed, and modified online, while mod-
ifying standard swap partitions is not possible without
taking a machine offline and may not be trivial without
re-imaging a machine.

4.6 Live Dump

The ability to take a core dump on an online system can
be useful when a machine is otherwise hung and a the
crash or panic would be difficult if not impossible to re-
produce. Illumos can force a crash dump on an online
system by issuing the savecore -L command.

This feature is not a replacement for normal crash
dumps because the system is not halted during the dump
which leads to an inconsistent state stored in the core
dump. However, this adds another tool for enterprise

2https://people.freebsd.org/ rgrimes/

FreeBSD users that must avoid taking machines offline
as much as possible.

5 Acknowledgments

The author would like to thank Michael Dexter, for his
initial prompting to write this paper and his help debug-
ging the original issues that led to our current combined
knowledge of core dumps, Rodney W. Grimes, for his-
torical knowledge and help reading code from PDP-11
assembly to modern C, and Allan Jude, Daniel Nowacki
and Chris Findeisen for finding and correct the many,
many spelling, grammar and syntax issues in earlier ver-
sions of this paper.

The author thanks Deb Goodkin of the FreeBSD Foun-
dation for her help bringing me into the FreeBSD com-
munity and lastly thanks the FreeBSD community in
general for making this day and paper possible.

6 Appendix

6.1 The Past: A Complete History of Core
Dumps

The following sections list when different features of the
core dump code were introduced starting with the core
dump code itself. First the dump facility will be followed
through the later versions of Research UNIX and then
BSD through to present versions of FreeBSD.

6.2 Core Dumps in UNIX

Core dumping was initially a manual process. As docu-
mented in Version 6 AT&T UNIX’s crash(8), an oper-
ator could take a core dump “if [they felt] up to debug-
ging”. Though 6th Edition is not the first appearance of
dump code in UNIX, it is the first complete repository of
code the public has access to.

6.2.1 6th Edition UNIX

In 6th Edition UNIX crash(8) shows how to manually
take a core dump:

If the reason for the crash is not evident (see
below for guidance on ‘evident’) you may
want to try to dump the system if you feel up
to debugging. At the moment a dump can be
taken only on magtape. With a tape mounted
and ready, stop the machine, load address 44,
and start. This should write a copy of all of
core on the tape with an EOF mark.

https://people.freebsd.org/~rgrimes/

6th Edition UNIX’s core dump procedure is defined in
m40.s and m45. s give UNIX support for the PDP-11/40
and PDP-11/45.

6.2.2 7th Edition UNIX
7th Edition UNIX adds support for the PDP-11/70.

6.2.3 UNIX/32V

UNIX/32V was an early port of UNIX to the DEC
VAX architecture making use of the C programming
language to decouple the code from the PDP-11.
/usr/src/sys/sys/locore.s contains the first ap-
pearance of doadump (), the same function name used
today, written in VAX assembly.

6.3 Core Dumps in BSD
6.3.1 1BSD & 2BSD

1BSD and 2BSD inherited their dump code directly from
6th Edition UNIX so it therefore supports the PDP-11/40
and PDP-11/45.

6.3.2 3BSD

3BSD imports its dump code from UNIX/32V maintain-
ing the name doadump(). Because of this pedigree,
doadump () is written in VAX assembly.

A “todo” list found in usr/src/sys/sys/T0ODO notes
that “large core dumps are awful and even uninterrupt-
ible!”.

6.3.3 4BSD

4BSD introduces a new feature to doadump, printing
tracing information with dumptrc.

In addition, usr/src/sys/sys/T0ODO is the first men-
tion of writing dumps to swap: “Support automatic
dumps to paging area”.

6.3.4 4.1BSD

Beginning in 4.1BSD doadump () is relegated to setting
up the machine for dumpsys () which is written in C and
found in sys/vax/vax/machdep. c.

As of 4.1c2BSD doadump () now fulfills the “todo”
listed in 4BSD and dumps to the “paging area”, or swap.
savecore(8) is introduced to extract the core from the
swap partition and place it in the filesystem.

e Support for VAXT750, VAXT7ZZ

(VAX730)

VAX780,

e In 4.1c2BSD changes VAX7ZZ references to
VAX730

6.3.5 4.2BSD

* no changes.

6.3.6 4.3BSD
4.3 BSD-Tahoe

* Initial support is added for the “tahoe” processor
and and doadump is ported to the tahoe.

4.3 BSD Net/1

e Same as 4.3-Tahoe

4.3 BSD-Reno

* hp300 and i386 core dump support is added
in usr/src/sys/hp300/locore. s and
usr/src/sys/i386/locore. s, respectively.

4.3 BSD Net/2

e Same as Reno

6.3.7 4.4BSD
* luna68k support added
* news3400 support added
e pmax support added

e sparc support added

4.4-BSD Litel & 4.4-BSD Lite2
e Same as 4.4BSD - changes made due to AT&T
UNIX System Laboratories (USL) lawsuit.
6.3.8 386BSD
386BSD 0.0

* Reduce support to i386 and hp300 support

386BSD 0.1

* hp300 code removed

386BSD 0.1-patchkit
e Same as 386BSD 0.1

6.4 Core Dumps in FreeBSD
6.4.1 FreeBSD 1.0
* 1386 support from 386BSD-0.1-patchkit

6.4.2 FreeBSD 2.0.0
FreeBSD 2.0.0

* doadump () no longer exists, though is mentioned
in comments.

FreeBSD 2.2.0

boot() and
because

* dumpsys() is placed inside
dumpsys() in kern_shutdown.c
code was not seen as machine dependent.

6.4.3 FreeBSD 3.0.0
* SMP support

* alpha support

6.4.4 FreeBSD 4.0.0
* Added print uptime before rebooting.

* Better error message when dumps are not supported

6.4.5 FreeBSD 5.0.0
* Added IA64, sparc64, and pc98 support.

e New kernel dump infrastructure. Broken out to in-
dividual architectures again. doadump () is back!

* Crash dumps can now be obtained in the late stages
of kernel initialisation before single user mode

6.4.6 FreeBSD 6.0.0
FreeBSD 6.0.0

* AMDO64 and arm support added.

* AMDO64 and 1386 switch to ELF as their crash dump
format.

* AMDO64 and i386 bump their dump format to ver-
sion 2.

FreeBSD 6.2.0

* minidump code added.

6.4.7 FreeBSD 7.0.0
FreeBSD 7.0.0

* sundv support added

* minidumps are now default

* alpha support is removed

FreeBSD 7.1.0

* textdump code is added

6.4.8 FreeBSD 8.0.0
* PowerPC support added.

* mips support added.

6.4.9 FreeBSD 9.0.0

* Merge common amd64/i386 dump code under
sys/x86 subtree.

* Only dump at first panic in the event of a double
panic

* Add dump command for DDB

* Minidump v2

6.4.10 FreeBSD 10.0.0

* On systems with SMP, CPUs other than
the one processing the panic are stopped.
This behavior is tunable with the sysctl
kern.stop_scheduler_on_panic

6.4.11 FreeBSD 11.0.0
* RISC-V support added.

* arm64 support added.

* Factored out duplicated code from
dumpsys() on each each architecture into
sys/kern/kern_dump.c

* A ‘show panic’ command was added to DDB

e “4Kn” kernel dump support. Dumps are now writ-
ten out in the native block size. savecore (1) up-
dated accordingly.

e “4Kn” minidump support for AMDG64 only

* strlcpy(3) is used to properly null-terminate
strings in kernel dump header

6.4.12 FreeBSD 12-CURRENT

* Support for encrypted kernel crash dumps added.
dumpon(8) and savecore(8) updated accord-
ingly. New tool for decrypting cores added,
decryptcore(8). Tested on amd64, 1386, mipsel
and sparc64. Untested on arm and arm64. En-
crypted textdump is not yet implemented.

	Introduction
	Motivation
	The Present
	Core Dumps in FreeBSD
	Quick Background
	Full Core Dump Procedure
	Full Core Dump Contents
	Minidump Procedure and Contents
	Textdump Procedure and Contents

	Core Dumps in Mac OS X
	Core Dumps in Illumos
	Backtrace.io

	The Future
	netdump - Network Dump
	Compressed Dump
	minidumpsz - Minidump Size Estimation
	Modularizing Dump Code
	Dump to swap on zvol
	Live Dump

	Acknowledgments
	Appendix
	The Past: A Complete History of Core Dumps
	Core Dumps in UNIX
	6th Edition UNIX
	7th Edition UNIX
	UNIX/32V

	Core Dumps in BSD
	1BSD & 2BSD
	3BSD
	4BSD
	4.1BSD
	4.2BSD
	4.3BSD
	4.4BSD
	386BSD

	Core Dumps in FreeBSD
	FreeBSD 1.0
	FreeBSD 2.0.0
	FreeBSD 3.0.0
	FreeBSD 4.0.0
	FreeBSD 5.0.0
	FreeBSD 6.0.0
	FreeBSD 7.0.0
	FreeBSD 8.0.0
	FreeBSD 9.0.0
	FreeBSD 10.0.0
	FreeBSD 11.0.0
	FreeBSD 12-CURRENT

